Spectrum of the periodic Dirac operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The absolute continuity of the spectrum for the periodic Dirac operator $$ \widehat D=\sum_{j=1}^n\biggl(-i\frac{\partial}{{\partial}x_j}-A_j\biggr) \widehat\alpha_j+\widehat V^{(0)}+\widehat V^{(1)},\quad x\in\mathbb R^n,\quad n\geq3, $$ is proved given that $A\in C(\mathbb R^n;\mathbb R^n)\cap H_\mathrm{loc}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, and also that the Fourier series of the vector potential $A\colon\mathbb R^n\to\mathbb R^n$ is absolutely convergent. Here, $\widehat V^{(s)}=(\widehat V^{(s)})^*$ are continuous matrix functions and $\widehat V^{(s)}\widehat\alpha_j=(-1)^s\widehat\alpha_j\widehat V^{(s)}$ for all anticommuting Hermitian matrices $\widehat\alpha_j$, $\widehat\alpha_j^2=\hat I$, $s=0,1$.
@article{TMF_2000_124_1_a0,
     author = {L. I. Danilov},
     title = {Spectrum of the periodic {Dirac} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--17},
     year = {2000},
     volume = {124},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Spectrum of the periodic Dirac operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 3
EP  - 17
VL  - 124
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a0/
LA  - ru
ID  - TMF_2000_124_1_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Spectrum of the periodic Dirac operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 3-17
%V 124
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a0/
%G ru
%F TMF_2000_124_1_a0
L. I. Danilov. Spectrum of the periodic Dirac operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a0/

[1] M. Sh. Birman, T. A. Suslina, The periodic Dirac operator is absolutely continuous, Preprint ESI No 603, The Erwin Schrödinger Internat. Inst. for Math. Phys., Wien, 1998 | MR

[2] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 9:1 (1997), 32–48 | MR | Zbl

[3] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 10:4 (1998), 1–36 | MR | Zbl

[4] L. I. Danilov, TMF, 118:1 (1999), 3–14 | DOI | MR | Zbl

[5] L. I. Danilov, Spektr operatora Diraka s periodicheskim potentsialom, III, Dep. v VINITI 10.07.92. No 2252–V92, VINITI, M., 1992

[6] A. Sobolev, Absolute continuity of the periodic magnetic Schrödinger operator, Preprint ESI No 495, The Erwin Schrödinger Internat. Inst. for Math. Phys., Wien, 1997 | MR

[7] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[8] L. I. Danilov, TMF, 85:1 (1990), 41–53 | MR | Zbl

[9] L. I. Danilov, TMF, 103:1 (1995), 3–22 | MR | Zbl

[10] L. I. Danilov, Spektr operatora Diraka s periodicheskim potentsialom, VI, Dep. v VINITI 31.12.96. No 3855–V96, VINITI, M., 1996

[11] I. M. Gelfand, DAN SSSR, 73:6 (1950), 1117–1120 | MR | Zbl

[12] L. E. Thomas, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR

[13] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR

[14] L. I. Danilov, Spektr operatora Diraka s periodicheskim potentsialom, I, Dep. v VINITI 12.12.91. No 4588–V91, VINITI, M., 1991

[15] L. I. Danilov, Odno svoistvo tselochislennoi reshetki v ${\mathbf R}^3$ i spektr operatora Diraka s periodicheskim potentsialom, Preprint, FTI UrO AN SSSR, Sverdlovsk, 1988 | MR