Spectrum of the periodic Dirac operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The absolute continuity of the spectrum for the periodic Dirac operator $$ \widehat D=\sum_{j=1}^n\biggl(-i\frac{\partial}{{\partial}x_j}-A_j\biggr) \widehat\alpha_j+\widehat V^{(0)}+\widehat V^{(1)},\quad x\in\mathbb R^n,\quad n\geq3, $$ is proved given that $A\in C(\mathbb R^n;\mathbb R^n)\cap H_\mathrm{loc}^q(\mathbb R^n;\mathbb R^n)$, $2q>n-2$, and also that the Fourier series of the vector potential $A\colon\mathbb R^n\to\mathbb R^n$ is absolutely convergent. Here, $\widehat V^{(s)}=(\widehat V^{(s)})^*$ are continuous matrix functions and $\widehat V^{(s)}\widehat\alpha_j=(-1)^s\widehat\alpha_j\widehat V^{(s)}$ for all anticommuting Hermitian matrices $\widehat\alpha_j$, $\widehat\alpha_j^2=\hat I$, $s=0,1$.
@article{TMF_2000_124_1_a0,
     author = {L. I. Danilov},
     title = {Spectrum of the periodic {Dirac} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {124},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Spectrum of the periodic Dirac operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 3
EP  - 17
VL  - 124
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a0/
LA  - ru
ID  - TMF_2000_124_1_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Spectrum of the periodic Dirac operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 3-17
%V 124
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a0/
%G ru
%F TMF_2000_124_1_a0
L. I. Danilov. Spectrum of the periodic Dirac operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 124 (2000) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TMF_2000_124_1_a0/