Flux density distribution and energy balance equation for cascade particles in solids
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 485-499
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an approach in which the quasi temperature of cascade particles, which is different from the lattice temperature, is introduced as a general thermodynamic parameter. We then construct the energy balance equation for the particles based on the thermodynamic description of the system. We also analyze the flux density of cascade particles, its stationary value, and its evolution.
@article{TMF_2000_123_3_a9,
     author = {Yu. A. Kashlev},
     title = {Flux density distribution and energy balance equation for cascade particles in solids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {485--499},
     year = {2000},
     volume = {123},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a9/}
}
TY  - JOUR
AU  - Yu. A. Kashlev
TI  - Flux density distribution and energy balance equation for cascade particles in solids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 485
EP  - 499
VL  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a9/
LA  - ru
ID  - TMF_2000_123_3_a9
ER  - 
%0 Journal Article
%A Yu. A. Kashlev
%T Flux density distribution and energy balance equation for cascade particles in solids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 485-499
%V 123
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a9/
%G ru
%F TMF_2000_123_3_a9
Yu. A. Kashlev. Flux density distribution and energy balance equation for cascade particles in solids. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 485-499. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a9/

[1] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[2] D. Dins, D. Viniard, Radiatsionnye effekty v tverdykh telakh, IL, M., 1960

[3] J. Narayan, O. S. Oen, D. Fathy, O. W. Holland, Materials Lett., 3:3 (1985), 68–72 | DOI

[4] M. T. Robinson, Radiation – Induced Voids in Metals, U. S. Atomic Energy Commission, 1972, 397–411

[5] W. S. Snyder, J. Neufeld, Phys. Rev., 103 (1956), 862–864 | DOI

[6] G. N. Kinchin, R. S. Piz, UFN, 60:3 (1956), 582–594 | MR

[7] J. Lindhard, M. Scharff, H. E. Schiott, Mat. Fys. Medd. Dan. Selek., 33:14 (1963), 3–42

[8] V. M. Lenchenko, Yu. Z. Akilov, FTP, 5:2 (1971), 397–404

[9] V. V. Gann, I. G. Marchenko, VANT, 1987, no. 2(40), 81–84 | MR

[10] A. J. Sampio, R. Lussi, Phys. Chem. Solids, 44:6 (1983), 479–488 | DOI

[11] P. Mazur, J. B. Sanders, Physica, 44:3 (1969), 444–448 | DOI | MR

[12] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sov. radio, M., 1977 | MR | Zbl

[13] M. Rahman, Phys. Rev. B, 52:5 (1996), 3383–3392 | DOI

[14] J. Lindhard, V. Nielsen, M. Scharff, P. V. Thomsen, Mat. Fys. Medd. Dan. Selek., 33:10 (1963), 2–42

[15] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971 | MR

[16] D. Kareri, Poryadok i besporyadok v strukture materii, Mir, M., 1985

[17] J. Keizer, J. Chem. Phys., 64 (1976), 1679–1687 | DOI | MR

[18] W. G. Wolfer, A. Si-Ahmed, J. Nucl. Mater., 99:1 (1981), 117–123 | DOI