Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 452-461
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new high-accuracy method is suggested for calculating physical quantities for which only finitely many terms of the divergent series in a traditional perturbation theory are known. The method is based on approximating the desired quantity with the sum of finitely many terms of an absolutely convergent series. As an example, the $\beta$-function in the $\varphi_4^4 $ model and the critical exponent $\alpha$ characterizing the behavior of the $\mathrm{He}^4$ heat capacity near the phase transition point are calculated.
@article{TMF_2000_123_3_a6,
     author = {V. V. Belokurov and Yu. P. Solov'ev and E. T. Shavgulidze},
     title = {Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--461},
     year = {2000},
     volume = {123},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a6/}
}
TY  - JOUR
AU  - V. V. Belokurov
AU  - Yu. P. Solov'ev
AU  - E. T. Shavgulidze
TI  - Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 452
EP  - 461
VL  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a6/
LA  - ru
ID  - TMF_2000_123_3_a6
ER  - 
%0 Journal Article
%A V. V. Belokurov
%A Yu. P. Solov'ev
%A E. T. Shavgulidze
%T Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 452-461
%V 123
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a6/
%G ru
%F TMF_2000_123_3_a6
V. V. Belokurov; Yu. P. Solov'ev; E. T. Shavgulidze. Perturbation theory with convergent series for calculating physical quantities specified by finitely many terms of a divergent series in traditional perturbation theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 452-461. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a6/

[1] J.-C. le Guillou, J. Zinn-Justin (eds.), Large-order behaviour of perturbation theory, North-Holland, Amsterdam, 1990

[2] D. I. Kazakov, D. V. Shirkov, Fortschr. Phys., 28 (1980), 465 | DOI | MR

[3] V. V. Belokurov, E. T. Shavgulidze, Yu. P. Solovyov, Mod. Phys. Lett. A, 10:39 (1995), 3033 | DOI | MR

[4] V. V. Belokurov, Yu. P. Solovev, E. T. Shavgulidze, TMF, 109:1 (1996), 51, 60 | DOI | MR

[5] V. V. Belokurov, Yu. P. Solovev, E. T. Shavgulidze, Fundam. prikl. mat., 3:3 (1997), 693 | MR | Zbl

[6] V. V. Belokurov, Yu. P. Solovev, E. T. Shavgulidze, UMN, 52:2 (1997), 155 | DOI | MR | Zbl

[7] V. V. Belokurov, V. V. Kamchatny, E. T. Shavgulidze, Yu. P. Solovyov, Mod. Phys. Lett. A, 12:10 (1997), 661 | DOI

[8] G. Khardi, Raskhodyaschiesya ryady, IL, M., 1951

[9] V. S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[10] V. V. Belokurov, Yu. P. Solovev, E. T. Shavgulidze, “Metod summirovaniya raskhodyaschikhsya ryadov s lyuboi tochnostyu”, Mat. zametki (to appear)

[11] S. G. Gorishny et al., Phys. Lett. B, 132 (1983), 351 | DOI

[12] D. I. Kazakov, “Renormgroup”, Phys. Lett. B, 133 (1983), 406 | DOI

[13] D. V. Shirkov, KEK Report 91–13, Tsukuba, Japan, 1992

[14] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford, 1989 | MR

[15] J. A. Lipa et al., Phys. Rev. Lett., 76 (1996), 944 | DOI | MR

[16] R. Guida, J. Zinn-Justin, J. Phys. A, 31 (1998), 8103 | DOI | MR | Zbl