Reduction of the dressing chain of the Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 424-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We reduce the problem of constructing real finite-gap solutions of the focusing modified Korteweg–de Vries equation to the dressing chain of the Schrödinger operator. We show that the Schrödinger operator spectral curve corresponding to such a solution is real. We give some restrictions on the initial data for the chain that lead to such solutions. We also consider a soliton reduction. We obtain compact representations for the multisoliton and breather solutions of the modified Korteweg–de Vries equationentations can be useful in developing the perturbation theory for various applied problems.
@article{TMF_2000_123_3_a4,
     author = {M. Yu. Kulikov and V. S. Novikov},
     title = {Reduction of the dressing chain of the {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {424--432},
     year = {2000},
     volume = {123},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a4/}
}
TY  - JOUR
AU  - M. Yu. Kulikov
AU  - V. S. Novikov
TI  - Reduction of the dressing chain of the Schrödinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 424
EP  - 432
VL  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a4/
LA  - ru
ID  - TMF_2000_123_3_a4
ER  - 
%0 Journal Article
%A M. Yu. Kulikov
%A V. S. Novikov
%T Reduction of the dressing chain of the Schrödinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 424-432
%V 123
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a4/
%G ru
%F TMF_2000_123_3_a4
M. Yu. Kulikov; V. S. Novikov. Reduction of the dressing chain of the Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 424-432. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a4/

[1] A. P. Veselov, A. B. Shabat, Funkts. analiz i ego prilozh., 27 (1993), 1 | MR | Zbl

[2] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, UMN, 31:1 (1976), 187 | MR | Zbl

[3] V. E. Adler, Funkts. analiz i ego prilozh., 27 (1993), 79 | MR | Zbl

[4] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[5] A. B. Shabat, Inverse Problems, 8 (1992), 303 | DOI | MR | Zbl

[6] M. Yu. Kulikov, G. M. Fraiman, $N$-solitonnye resheniya modifitsirovannogo uravneniya Kortevega-de Vriza, Preprint No 404, IPF RAN, N. Novgorod, 1996

[7] E. N. Pelinovskii, A. V. Slyunyaev, Pisma v ZhETF, 67:9 (1998), 628

[8] A. V. Slyunyaev, E. N. Pelinovskii, ZhETF, 116 (1999), 318

[9] D. N. Ivanychev, G. M. Fraiman, TMF, 110 (1997), 254 | DOI | MR | Zbl

[10] A. B. Shabat, TMF, 121:1 (1999), 165 | DOI | MR | Zbl