Darboux coordinates on $K$-orbits and the spectra of Casimir operators on Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 407-423
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose an algorithm for obtaining the spectra of Casimir ce Lie groups. We prove that the existence of the normal polarization associated with a linear functional on the Lie algebra is necessary and sufficient for the transition to local canonical Darboux coordinates $(p,q)$ on the coadjoint representation orbit that is linear in the “momenta”. We show that the $\lambda$-representations of Lie algebras are used, in particular, in integrating differential equationsthe quantization of the Poisson bracket on the coalgebra in canonical coordinates.
@article{TMF_2000_123_3_a3,
author = {I. V. Shirokov},
title = {Darboux coordinates on $K$-orbits and the spectra of {Casimir} operators on {Lie} groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {407--423},
publisher = {mathdoc},
volume = {123},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a3/}
}
TY - JOUR AU - I. V. Shirokov TI - Darboux coordinates on $K$-orbits and the spectra of Casimir operators on Lie groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 407 EP - 423 VL - 123 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a3/ LA - ru ID - TMF_2000_123_3_a3 ER -
I. V. Shirokov. Darboux coordinates on $K$-orbits and the spectra of Casimir operators on Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 407-423. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a3/