Darboux coordinates on $K$-orbits and the spectra of Casimir operators on Lie groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 407-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an algorithm for obtaining the spectra of Casimir ce Lie groups. We prove that the existence of the normal polarization associated with a linear functional on the Lie algebra is necessary and sufficient for the transition to local canonical Darboux coordinates $(p,q)$ on the coadjoint representation orbit that is linear in the “momenta”. We show that the $\lambda$-representations of Lie algebras are used, in particular, in integrating differential equationsthe quantization of the Poisson bracket on the coalgebra in canonical coordinates.
@article{TMF_2000_123_3_a3,
     author = {I. V. Shirokov},
     title = {Darboux coordinates on $K$-orbits and the spectra of {Casimir} operators on {Lie} groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {407--423},
     year = {2000},
     volume = {123},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a3/}
}
TY  - JOUR
AU  - I. V. Shirokov
TI  - Darboux coordinates on $K$-orbits and the spectra of Casimir operators on Lie groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 407
EP  - 423
VL  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a3/
LA  - ru
ID  - TMF_2000_123_3_a3
ER  - 
%0 Journal Article
%A I. V. Shirokov
%T Darboux coordinates on $K$-orbits and the spectra of Casimir operators on Lie groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 407-423
%V 123
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a3/
%G ru
%F TMF_2000_123_3_a3
I. V. Shirokov. Darboux coordinates on $K$-orbits and the spectra of Casimir operators on Lie groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 407-423. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a3/

[1] A. A. Kirillov, UMN, 17:4 (1962), 57–110 | MR | Zbl

[2] A. A. Kirillov, Funkts. analiz i ego prilozh., 2:2 (1968), 40–55 ; 3:1 (1969), 36–47 | MR | Zbl | MR | Zbl

[3] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1978 | MR | Zbl

[4] A. A. Kirillov, “Vvedenie v teoriyu predstavlenii i nekommutativnyi garmonicheskii analiz”, Teoriya predstavlenii i nekommutativnyi garmonicheskii analiz, Itogi nauki i tekhn. Sovrem. problemy matematiki. Fundam. napr., 22, ed. R. V. Gamkrelidze, VINITI, M., 1988, 5–162 | MR

[5] I. V. Shirokov, $K$-orbity, garmonicheskii analiz na odnorodnykh prostranstvakh i integrirovanie differentsialnykh uravnenii, Preprint, OmGU, Omsk, 1998

[6] A. V. Shapovalov, I. V. Shirokov, TMF, 104:2 (1995), 195–213 | MR | Zbl

[7] A. S. Mischenko, A. T. Fomenko, Tr. semin. vektor. tenzor. anal., 19 (1979), 3–94 | Zbl

[8] B. Kostant, “Quantization and Unitary Representations. I: Prequantization”, Lectures in Modern Analysis and Applications, V. III, ed. C. T. Taam, Springer-Verlag, Berlin, 1970, 87–208 | DOI | MR