Isomonodromic deformations of Heun and Painlevé equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 395-406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Continuing the study of the relationship between the Heun and the Painlevé classes of equations reported in two previous papers, we formulate and prove the main theorem expressing this relationship. We give a Hamiltonian interpretation of the isomonodromic deformation condition and propose an alternative classification of the Painlevé equations, which includes ten equations.
@article{TMF_2000_123_3_a2,
     author = {S. Yu. Slavyanov},
     title = {Isomonodromic deformations of {Heun} and {Painlev\'e} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {395--406},
     year = {2000},
     volume = {123},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a2/}
}
TY  - JOUR
AU  - S. Yu. Slavyanov
TI  - Isomonodromic deformations of Heun and Painlevé equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 395
EP  - 406
VL  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a2/
LA  - ru
ID  - TMF_2000_123_3_a2
ER  - 
%0 Journal Article
%A S. Yu. Slavyanov
%T Isomonodromic deformations of Heun and Painlevé equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 395-406
%V 123
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a2/
%G ru
%F TMF_2000_123_3_a2
S. Yu. Slavyanov. Isomonodromic deformations of Heun and Painlevé equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 395-406. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a2/

[1] K. Heun, Math. Annal., 33 (1889), 161 | DOI | MR

[2] Centennial Workshop on Heun's Equation. Theory and Applications, eds. A. Seeger, W. Lay, MPI/MF, Stuttgart, 1990

[3] A. Decarreau, M. C. Dumont-Lepage, P. Maroni, A. Robert, A. Ronveaux, Ann. Soc. Sc. Bruxelles, 92 (1978), 53 | MR | Zbl

[4] A. Decarreau, P. Maroni, A. Robert, Ann. Soc. Sc. Bruxelles, 92 (1978), 151 | MR | Zbl

[5] S. Yu. Slavyanov, W. Lay, A. Seeger, Classification Heun's Differential Equations, ed. A. Ronveaux, Oxford University Press, Oxford, 1995 | MR

[6] A. Zeeger, V. Lai, S. Yu. Slavyanov, TMF, 104 (1995), 233 | MR

[7] P. Painlevé, Bull. C R. Acad. Sci. Paris, 126 (1898), 1697 ; Bull. Soc. Math. France, 28 (1900), 201 ; Acta Math., 25 (1902), 1 | Zbl | DOI | MR | Zbl | DOI | MR

[8] B. Gambier, Acta Math., 33 (1909), 1 | DOI | MR | Zbl

[9] R. Garnier, Ann. Sci. Ecole Norm. Sup., 29 (1912), 1 | DOI | MR | Zbl

[10] R. Fuchs, Math. Ann., 63 (1907), 301 | DOI | MR | Zbl

[11] L. Schlesinger, J. Reine Angew. Math., 141 (1912), 96 | MR | Zbl

[12] M. Jimbo, T. Miwa, K. Ueno, Physica D, 2 (1981), 306 ; M. Jimbo, T. Miwa, Physica D, 2 (1981), 407 ; 4, 26 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[13] H. Flashka, A. C. Newell, Commun. Math. Phys., 76 (1980), 65 | DOI | MR

[14] K. Iwasaki, H. Kimura, S. Shimomura, M. Ioshida, From Gauss to Painlevé: A Modern Theory of Special Functions, Vieweg, Braunschweig, 1991 | MR | Zbl

[15] S. Yu. Slavyanov, J. Phys. A, 29 (1996), 7329 | DOI | MR | Zbl

[16] J. Malmquist, Ark. Mat. Astr. Fys., 17 (1922–1923), 1

[17] K. Okamoto, Ann. Math. Pure Appl., 146 (1986), 337 | DOI | MR

[18] S. Yu. Slavyanov, TMF, 119 (1999), 3 | DOI | MR | Zbl

[19] A. R. Its, V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Mathematics, 1191, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1986 | DOI | MR