$D$-dimensional $p$-brane cosmological models associated with a Lie algebra of the type $A_m$
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 374-394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a $D$-dimensional cosmological model on the manifold $\mathbf M= \mathbb R\times M_0\times\cdots\times M_n$ describing an evolution of $n+1$ Einstein factor spaces $M_i$ in a theory with several dilatonic scalar fields and differential forms admitting an interpretation in terms of intersecting $p$-branes. The equations of motion of the model are reduced to the Euler–Lagrange equations for the so-called pseudo-Euclidean Toda-like system. Assuming that the characteristic vectors related to the configuration of $p$-branes and their couplings to the dilatonic scalar fields can be interpreted as the root vectors of a Lie algebra of the type $A_m\equiv sl(m+1,\mathbb C)$, we reduce the model to an open Toda chain, which is integrable by the customary methods. The resulting metric has the form of the Kasner solution. We single out the particular model describing the Friedman-like evolution of the three-dimensional external factor space $M_0$ e Einsteinian conformal gaugeraction of the internal factor spaces $M_1,\dots,M_n$.
@article{TMF_2000_123_3_a1,
     author = {V. R. Gavrilov and V. N. Melnikov},
     title = {$D$-dimensional $p$-brane cosmological models associated with a {Lie} algebra of the type $A_m$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {374--394},
     year = {2000},
     volume = {123},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a1/}
}
TY  - JOUR
AU  - V. R. Gavrilov
AU  - V. N. Melnikov
TI  - $D$-dimensional $p$-brane cosmological models associated with a Lie algebra of the type $A_m$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 374
EP  - 394
VL  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a1/
LA  - ru
ID  - TMF_2000_123_3_a1
ER  - 
%0 Journal Article
%A V. R. Gavrilov
%A V. N. Melnikov
%T $D$-dimensional $p$-brane cosmological models associated with a Lie algebra of the type $A_m$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 374-394
%V 123
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a1/
%G ru
%F TMF_2000_123_3_a1
V. R. Gavrilov; V. N. Melnikov. $D$-dimensional $p$-brane cosmological models associated with a Lie algebra of the type $A_m$. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 374-394. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a1/

[1] K. S. Stelle, Lectures on supergravity $p$-branes, E-print hep-th/9701088

[2] I. Ya. Aref'eva, O. A. Rytchkov, Incidence matrix description of intersecting $p$-brane solutions, E-print hep-th/9612236 | MR

[3] I. Ya. Aref'eva, M. G. Ivanov, O. A. Rytchkov, Properties of intersecting $p$-branes in various dimensions, E-print hep-th/9702077 | MR

[4] V. D. Ivashchuk, V. N. Melnikov, Gravit. Cosmology, 2 (1996), 297 ; E-print hep-th/9612089 | Zbl

[5] V. D. Ivashchuk, V. N. Melnikov, Phys. Lett. B, 403 (1997), 23 | DOI | MR

[6] H. Lü, S. Mukherji, C. N. Pope, K.-W. Xu, Cosmological solutions in string theories, E-print hep-th/9610107 | MR

[7] H. Lü, C. N. Pope, K.-W. Xu, Liouville and Toda solitons in M-theory, E-print hep-th/9604058 | MR

[8] M. Cvetic, A. A. Tseytlin, Nucl. Phys. B, 478 (1996), 181 | DOI | MR | Zbl

[9] V. D. Ivashchuk, V. N. Melnikov, Class. Q Grav., 14 (1997), 3001 ; E-print hep-th/9705036 | DOI | MR | Zbl

[10] K. A. Bronnikov, M. A. Grebeniuk, V. D. Ivashchuk, V. N. Melnikov, Gravit. Cosmology, 3 (1997), 105 | Zbl

[11] M. A. Grebeniuk, V. D. Ivashchuk, V. N. Melnikov, Gravit. Cosmology, 3 (1997), 243 ; E-print gr-qc/9708031 | Zbl

[12] K. A. Bronnikov, V. D. Ivashchuk, V. N. Melnikov, Gravit. Cosmology, 3 (1997), 203 ; E-print gr-qc/9710054 | Zbl

[13] K. A. Bronnikov, U. Kasper, M. Rainer, Intersecting electric and magnetic $p$-branes: spherically symmetric solutions, E-print gr-qc/9708058 | MR

[14] K. A. Bronnikov, Gravit. Cosmology, 4 (1998), 49 ; E-print hep-th/9710207 | MR | Zbl

[15] I. Ya. Aref'eva, M. G. Ivanov, I. V. Volovich, Non-extremal intersecting $p$-branes in various dimensions, E-print hep-th/9702079 | MR

[16] N. Ohta, Intersection rules for non-extreme $p$-branes, E-print hep-th/9702164 | MR

[17] V. D. Ivashchuk, V. N. Melnikov, J. Math. Phys., 39 (1998), 2866 ; E-print hep-th/9708157 | DOI | MR | Zbl

[18] V. D. Ivashchuk, V. N. Melnikov, Class. Q Grav., 16 (1999), 849 ; E-print hep-th/9802121 | DOI | MR | Zbl

[19] V. D. Ivashchuk, S.-W. Kim, V. N. Melnikov, J. Math Phys., 40:8 (1999), 4072 ; E-print hep-th/9803006 | DOI | MR | Zbl

[20] M. J. Duff, R. R. Khuri, J. X. Lu, Phys. Rep., 259 (1995), 213 | DOI | MR

[21] N. Khvengia, Z. Khvengia, H. Lü, C. N. Pope, Toward field theory of F-theory, E-print hep-th/9703012

[22] J. M. Schwarz, Lectures on superstring and M-theory dualities, E-print hep-th/9607201 | MR

[23] M. J. Duff, M-theory (the theory formerly known as strings), E-print hep-th/9608117 | MR

[24] C. Hull, P. Townsend, Nucl. Phys. B, 438 (1995), 109 | DOI | MR | Zbl

[25] P. Horava, E. Witten, Nucl. Phys. B, 460 (1996), 506 | DOI | MR | Zbl

[26] C. Vafa, Nucl. Phys. B, 469 (1996), 403 | DOI | MR | Zbl

[27] C. M. Hull, Nucl. Phys. B, 468 (1996), 113 | DOI | MR | Zbl

[28] E. Cremmer, B. Julia, J. Scherk, Phys. Lett. B, 76 (1978), 409 | DOI

[29] V. D. Ivashchuk, V. N. Melnikov, A. I. Zhuk, Nuovo Cimento B, 104 (1989), 575 | DOI | MR

[30] U. Bleyer, V. D. Ivashchuk, V. N. Melnikov, A. I. Zhuk, Nucl. Phys. B, 429 (1994), 177 | DOI | MR | Zbl

[31] V. D. Ivashchuk, V. N. Melnikov, Int. J. Mod. Phys. D, 3 (1994), 795 | DOI

[32] V. D. Ivashchuk, V. N. Melnikov, Gravit. Cosmology, 1 (1995), 204 | Zbl

[33] V. D. Ivashchuk, V. N. Melnikov, Class. Q Grav., 12 (1995), 809 | DOI | MR | Zbl

[34] V. R. Gavrilov, V. D. Ivashchuk, V. N. Melnikov, J. Math. Phys., 36 (1995), 5829 | DOI | MR | Zbl

[35] V. R. Gavrilov, V. N. Melnikov, TMF, 114 (1998), 454 | DOI | MR | Zbl

[36] V. R. Gavrilov, U. Kasper, V. N. Melnikov, M. Rainer, Gen. Relat. Gravit., 31 (1999), 139 | DOI | MR | Zbl

[37] A. Anderson, J. Math. Phys., 37 (1996), 1349 | DOI | MR | Zbl

[38] M. Toda, Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[39] U. Gunter, A. Zhuk, Phys. Rev. D, 56 (1997), 6391 | DOI | MR

[40] G. Magnano, M. Sokolowski, Phys. Rev. D, 50 (1994), 5039 | DOI | MR