Test function space for Wick power series
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 355-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a criterion that is convenient for applications and exactly characterizes the test function space on which the operator realization of a given series of Wick powers of a free field is possible. The suggested derivation does not use the assumption that the metric of the state space is positive and can therefore be used in a gauge theory. It is based on the systematic use of the analytic properties of the Hilbert majorant of the indefinite metric and on the application of a suitable theorem on the unconditional convergence of series of boundary values of analytic functions.
@article{TMF_2000_123_3_a0,
     author = {A. G. Smirnov and M. A. Soloviev},
     title = {Test function space for {Wick} power series},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--373},
     year = {2000},
     volume = {123},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a0/}
}
TY  - JOUR
AU  - A. G. Smirnov
AU  - M. A. Soloviev
TI  - Test function space for Wick power series
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 355
EP  - 373
VL  - 123
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a0/
LA  - ru
ID  - TMF_2000_123_3_a0
ER  - 
%0 Journal Article
%A A. G. Smirnov
%A M. A. Soloviev
%T Test function space for Wick power series
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 355-373
%V 123
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a0/
%G ru
%F TMF_2000_123_3_a0
A. G. Smirnov; M. A. Soloviev. Test function space for Wick power series. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 3, pp. 355-373. http://geodesic.mathdoc.fr/item/TMF_2000_123_3_a0/

[1] A. Jaffe, Ann. Phys., 32 (1965), 127 | DOI | MR | Zbl

[2] A. Rieckers, Int. J. Theor. Phys., 4 (1971), 55 | DOI | MR

[3] A. S. Wightman, Adv. Math. Suppl. Stud. B, 7, 1981, 769 | MR

[4] D. Pierotti, Lett. Math. Phys., 15 (1988), 219 | DOI | MR | Zbl

[5] U. Moschella, F. Strocchi, Lett. Math. Phys., 24 (1992), 103 | DOI | MR | Zbl

[6] U. Moschella, J. Math. Phys., 34 (1993), 535 | DOI | MR | Zbl

[7] M. A. Soloviev, Lett. Math. Phys., 41 (1997), 265 | DOI | MR | Zbl

[8] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, T. 2, Fizmatgiz, M., 1958 | MR | Zbl

[9] M. A. Soloviev, “Beyond the theory of hyperfunctions”, Developments in Mathematics: The Moscow School, eds. V. Arnold, M. Monastyrsky, Chapman and Hall, London, 1993, 131 | MR | Zbl

[10] G. Morchio, F. Strocchi, Ann. Inst. H Poincaré. A, 33 (1980), 251 | MR

[11] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[12] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR

[13] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[14] M. A. Solovev, TMF, 105 (1995), 405 | Zbl

[15] M. A. Solovev, TMF, 121 (1999), 139 | DOI | Zbl