Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 285-293
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the recently found connection between geodesically equivalent metrics and integrable geodesic flows. If two different metrics on a manifold have the same geodesics, then the geodesic flows of these metrics admit sufficiently many integrals (of a special form) in involution, and vice versa. The quantum version of this result is also true: if two metrics on one manifold have the same geodesics, then the Beltrami–Laplace operator $\Delta$ for each metric admits sufficiently many linear differential operators commuting with $\Delta$. This implies that the topology of a manifold with two different metrics with the same geodesics must be sufficiently simple. We also have that the nonproportionality of the metrics at a point implies the nonproportionality of the metrics at almost all points.
@article{TMF_2000_123_2_a8,
     author = {V. S. Matveev and P. J. Topalov},
     title = {Geodesic equivalence of metrics as a particular case of integrability of geodesic flows},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {285--293},
     year = {2000},
     volume = {123},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a8/}
}
TY  - JOUR
AU  - V. S. Matveev
AU  - P. J. Topalov
TI  - Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 285
EP  - 293
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a8/
LA  - ru
ID  - TMF_2000_123_2_a8
ER  - 
%0 Journal Article
%A V. S. Matveev
%A P. J. Topalov
%T Geodesic equivalence of metrics as a particular case of integrability of geodesic flows
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 285-293
%V 123
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a8/
%G ru
%F TMF_2000_123_2_a8
V. S. Matveev; P. J. Topalov. Geodesic equivalence of metrics as a particular case of integrability of geodesic flows. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 285-293. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a8/

[1] U. Dini, Ann. Math. Ser. 2, 3 (1869), 269–293

[2] T. Levi-Civita, Ann. Mat. Ser. $2^a$, 24 (1896), 255–300 | DOI | Zbl

[3] A. V. Aminova, UMN, 48:2 (1993), 107–164 | MR | Zbl

[4] J. Mikesh, J. Math. Sci., 78:3 (1996), 311–333 ; “Геодезические отображения римановых и аффинно-связных пространств”, Геометрия–2, Итоги науки и техники. Современная математика и ее приложения, 11, ред. Н. М. Остиану, ВИНИТИ, М., 1994, 112–148 | DOI | MR

[5] I. Mikesh, DAN SSSR, 305:3 (1989), 534–536 | MR | Zbl

[6] E. Beltrami, Ann. Mat., 1:7 (1865)

[7] E. Beltrami, Ann. Mat., 2:2 (1868), 232–255 | DOI | Zbl

[8] P. J. Topalov, V. S. Matveev, Geodesic equivalence and integrability, Preprint series of Max-Planck-Institut Math. No 74, MPI, Bonn, 1998 | MR

[9] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press, Cambridge, 1937 | MR | Zbl

[10] I. A. Taimanov, Izv. AN SSSR. Ser. matem., 51:2 (1987), 429–435 | MR

[11] P. Zh. Topalov, Mat. sb., 188:2 (1997), 137–157 | DOI | MR | Zbl

[12] N. S. Sinyukov, DAN SSSR, 169:4 (1966), 770–772 | MR | Zbl

[13] S. Tabachnikov, Projectively equivalent metrics, exact transverse line field and the geodesic flow on the ellipsoid, Preprint UofA-R-161, University of Arkansas, Fayetteville, 1998 | MR

[14] A. V. Brailov, Izv. AN SSSR. Ser. matem., 50:4 (1986), 661–674 | MR | Zbl

[15] P. J. Topalov, Hierarchy of integrable geodesic flows, Preprint series of Max-Planck-Institut Math. No 115, MPI, Bonn, 1998 | MR

[16] A. V. Bolsinov, A. T. Fomenko, V. S. Matveev, Riemannian metrics with integrable geodesic flows on surfaces: local and global geometry, Preprint series of Max-Planck-Institut Math. No 122, MPI, Bonn, 1998 | MR