A new approach to the representation theory of semisimple Lie algebras and quantum algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 264-284
We propose a method for explicitly constructing the simple-root generators in an arbitrary finite-dimensional representation of a semisimple quantum algebra or Lie algebra. The method is based on general results from the global theory of representations of semisimple groups. The rank-two algebras $A_2$, $B_2=C_2$, $D_2$, and $G_2$ are considered as examples. The simple-root generators are represented as solutions of a system of finite-difference equations and are given in the form of $N_l\times N_l$ matrices, where $N_l$ is the dimension of the representation.
@article{TMF_2000_123_2_a7,
author = {A. N. Leznov},
title = {A new approach to the representation theory of semisimple {Lie} algebras and quantum algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {264--284},
year = {2000},
volume = {123},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a7/}
}
TY - JOUR AU - A. N. Leznov TI - A new approach to the representation theory of semisimple Lie algebras and quantum algebras JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 264 EP - 284 VL - 123 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a7/ LA - ru ID - TMF_2000_123_2_a7 ER -
A. N. Leznov. A new approach to the representation theory of semisimple Lie algebras and quantum algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 264-284. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a7/
[1] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, Gos. izd. inostr. lit-ry, M., 1947
[2] I. M. Gelfand, M. L. Tsetlin, DAN SSSR, 71 (1950), 825–829; 1017–1020 | Zbl