@article{TMF_2000_123_2_a5,
author = {D. A. Leites and A. N. Sergeev},
title = {Orthogonal polynomials of a discrete variable and {Lie} algebras of complex-size matrices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--236},
year = {2000},
volume = {123},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/}
}
TY - JOUR AU - D. A. Leites AU - A. N. Sergeev TI - Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 205 EP - 236 VL - 123 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/ LA - ru ID - TMF_2000_123_2_a5 ER -
D. A. Leites; A. N. Sergeev. Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 205-236. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/
[1] R. Roy, “The work of Chebyshev on orthogonal polynomials”, Topics in polynomials of one and several variables and their applications, eds. Rassias Th et al., World Scientific, Singapore, 1993, 495–512 ; Я. Л. Геронимус, Теория ортогональных многочленов. Обзор достижений отечественной математики, Гостехтеориздат, М.–Л., 1950 | DOI | MR | Zbl | MR
[2] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR
[3] B. Shoikhet, Certain topics on the Lie algebra $\frak{gl}(\lambda)$ representation theory, E-print q-alg/9703029
[4] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978 | MR
[5] B. L. Feigin, UMN, 43:2 (1988), 157–158 | MR
[6] J. Dixmier, J. Algebra, 24 (1973), 551–564 | DOI | MR | Zbl
[7] N. Ja Vilenkin, A. U. Klimyk, Representation of Lie groups and special functions, Vol. 1–3, 1991 ; 1992; Kluwer, Dordrecht, 1993 ; Representation of Lie groups and special functions, Recent advances, Kluwer, Dordrecht, 1995 | MR | Zbl | MR
[8] L. Littlejohn, A. Krall, Rocky Mt. J. Math., 16:3 (1986), 435–479 ; Acta Appl. Math., 17 (1989), 99–170 | DOI | MR | Zbl | DOI | MR | Zbl
[9] A. Mingarelli, A. Krall, Proc. Roy. Soc. Edinburgh. Sect. A, 90 (1981), 147–153 | DOI | MR | Zbl
[10] V. Derkach, Matem. zametki, 64:4 (1998), 509–521 | DOI | MR
[11] M. Vasiliev, Int. J. Mod. Phys. D, 5 (1996), 763–797 | DOI | MR
[12] S. Montgomery, J. Algebra, 195:2 (1997), 558–579 | DOI | MR | Zbl
[13] J. Dixmier, Algèbres envellopentes, Gautier-Villars, Paris, 1974 ; Enveloping algebras, AMS, Providence, RI, 1996 | MR | Zbl | MR | Zbl
[14] V. Kač, A. Radul, Commun. Math. Phys., 157 (1993), 429–457 | DOI | MR | Zbl
[15] P. Grozman, D. Leites, “Lie superalgebras of supermatrices of complex size and integrable dynamical systems”, Complex Analysis and Related Topics, Proc. of the International Symposium (Cuernavaca, Mexica, November 18–22, 1996), eds. N. Vasilevsky et al., Birkhauser, Basel, 1999, 73–105 | MR
[16] S. Leng, Algebra, Mir, M., 1968
[17] I. G. Macdonald, Symmetric functions and Hall polynomials, Second edition. With contributions by A. Zelevinsky, Clarendon Press; Oxford University Press, New York, 1995 | MR | Zbl