Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 205-236

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a uniform interpretation of the classical continuous Chebyshev and Hahn orthogonal polynomials of a discrete variable in terms of the Feigin Lie algebra $\mathfrak{gl}(\lambda)$ for $\lambda\in\mathbb C$. The Chebyshev and Hahn $q$-polynomials admit a similar interpretation, and orthogonal polynomials corresponding to Lie superalgebras can be introduced. We also describe quasi-finite modules over $\mathfrak{gl}(\lambda)$, real forms of this algebra, and the unitarity conditions for quasi-finite modules. Analogues of tensors over $\mathfrak{gl}(\lambda)$ are also introduced.
@article{TMF_2000_123_2_a5,
     author = {D. A. Leites and A. N. Sergeev},
     title = {Orthogonal polynomials of a discrete variable and {Lie} algebras of complex-size matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--236},
     publisher = {mathdoc},
     volume = {123},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/}
}
TY  - JOUR
AU  - D. A. Leites
AU  - A. N. Sergeev
TI  - Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 205
EP  - 236
VL  - 123
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/
LA  - ru
ID  - TMF_2000_123_2_a5
ER  - 
%0 Journal Article
%A D. A. Leites
%A A. N. Sergeev
%T Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 205-236
%V 123
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/
%G ru
%F TMF_2000_123_2_a5
D. A. Leites; A. N. Sergeev. Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 205-236. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/