Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 205-236
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a uniform interpretation of the classical continuous Chebyshev and Hahn orthogonal polynomials of a discrete variable in terms of the Feigin Lie algebra $\mathfrak{gl}(\lambda)$ for $\lambda\in\mathbb C$. The Chebyshev and Hahn $q$-polynomials admit a similar interpretation, and orthogonal polynomials corresponding to Lie superalgebras can be introduced. We also describe quasi-finite modules over $\mathfrak{gl}(\lambda)$, real forms of this algebra, and the unitarity conditions for quasi-finite modules. Analogues of tensors over $\mathfrak{gl}(\lambda)$ are also introduced.
@article{TMF_2000_123_2_a5,
     author = {D. A. Leites and A. N. Sergeev},
     title = {Orthogonal polynomials of a discrete variable and {Lie} algebras of complex-size matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--236},
     year = {2000},
     volume = {123},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/}
}
TY  - JOUR
AU  - D. A. Leites
AU  - A. N. Sergeev
TI  - Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 205
EP  - 236
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/
LA  - ru
ID  - TMF_2000_123_2_a5
ER  - 
%0 Journal Article
%A D. A. Leites
%A A. N. Sergeev
%T Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 205-236
%V 123
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/
%G ru
%F TMF_2000_123_2_a5
D. A. Leites; A. N. Sergeev. Orthogonal polynomials of a discrete variable and Lie algebras of complex-size matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 205-236. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a5/

[1] R. Roy, “The work of Chebyshev on orthogonal polynomials”, Topics in polynomials of one and several variables and their applications, eds. Rassias Th et al., World Scientific, Singapore, 1993, 495–512 ; Я. Л. Геронимус, Теория ортогональных многочленов. Обзор достижений отечественной математики, Гостехтеориздат, М.–Л., 1950 | DOI | MR | Zbl | MR

[2] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR

[3] B. Shoikhet, Certain topics on the Lie algebra $\frak{gl}(\lambda)$ representation theory, E-print q-alg/9703029

[4] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1978 | MR

[5] B. L. Feigin, UMN, 43:2 (1988), 157–158 | MR

[6] J. Dixmier, J. Algebra, 24 (1973), 551–564 | DOI | MR | Zbl

[7] N. Ja Vilenkin, A. U. Klimyk, Representation of Lie groups and special functions, Vol. 1–3, 1991 ; 1992; Kluwer, Dordrecht, 1993 ; Representation of Lie groups and special functions, Recent advances, Kluwer, Dordrecht, 1995 | MR | Zbl | MR

[8] L. Littlejohn, A. Krall, Rocky Mt. J. Math., 16:3 (1986), 435–479 ; Acta Appl. Math., 17 (1989), 99–170 | DOI | MR | Zbl | DOI | MR | Zbl

[9] A. Mingarelli, A. Krall, Proc. Roy. Soc. Edinburgh. Sect. A, 90 (1981), 147–153 | DOI | MR | Zbl

[10] V. Derkach, Matem. zametki, 64:4 (1998), 509–521 | DOI | MR

[11] M. Vasiliev, Int. J. Mod. Phys. D, 5 (1996), 763–797 | DOI | MR

[12] S. Montgomery, J. Algebra, 195:2 (1997), 558–579 | DOI | MR | Zbl

[13] J. Dixmier, Algèbres envellopentes, Gautier-Villars, Paris, 1974 ; Enveloping algebras, AMS, Providence, RI, 1996 | MR | Zbl | MR | Zbl

[14] V. Kač, A. Radul, Commun. Math. Phys., 157 (1993), 429–457 | DOI | MR | Zbl

[15] P. Grozman, D. Leites, “Lie superalgebras of supermatrices of complex size and integrable dynamical systems”, Complex Analysis and Related Topics, Proc. of the International Symposium (Cuernavaca, Mexica, November 18–22, 1996), eds. N. Vasilevsky et al., Birkhauser, Basel, 1999, 73–105 | MR

[16] S. Leng, Algebra, Mir, M., 1968

[17] I. G. Macdonald, Symmetric functions and Hall polynomials, Second edition. With contributions by A. Zelevinsky, Clarendon Press; Oxford University Press, New York, 1995 | MR | Zbl