The pentagon equation and mapping-class groups of punctured surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 198-204
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the quantum Teichmüller theory, the mapping-class groups of punctured surfaces are represented projectively based on Penner coordinates. Algebraically, the representation is based on the pentagon equation together with pair of additional relations. Two more examples of solutions of these equations are connected with matrix (or operator) generalizations of the Rogers dilogarithm. The corresponding central charges are rational. It is possible that this system of equations admits many different solutions.
@article{TMF_2000_123_2_a4,
     author = {R. M. Kashaev},
     title = {The pentagon equation and mapping-class groups of punctured surfaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--204},
     year = {2000},
     volume = {123},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a4/}
}
TY  - JOUR
AU  - R. M. Kashaev
TI  - The pentagon equation and mapping-class groups of punctured surfaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 198
EP  - 204
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a4/
LA  - ru
ID  - TMF_2000_123_2_a4
ER  - 
%0 Journal Article
%A R. M. Kashaev
%T The pentagon equation and mapping-class groups of punctured surfaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 198-204
%V 123
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a4/
%G ru
%F TMF_2000_123_2_a4
R. M. Kashaev. The pentagon equation and mapping-class groups of punctured surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 198-204. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a4/

[1] R. M. Kashaev, Lett. Math. Phys., 43:2 (1998), 105–115 ; E-print q-alg/9705021 | DOI | MR | Zbl

[2] R. M. Kashaev, Liouville central charge in quantum Teichmüller theory, PDMI Preprint 24/1998, PDMI, St-Petersburg, 1998 ; E-print hep-th/9811203 | MR

[3] L. D. Faddeev, Lett. Math. Phys., 34 (1995), 249–254 ; E-print hep-th/9504111 | DOI | MR | Zbl

[4] V. V. Bazhanov, R. J. Baxter, J. Stat. Phys., 71 (1993), 839–885 | DOI | MR

[5] V. V. Bazhanov, N. Yu. Reshetikhin, Remarks on the quantum dilogarithm, Preprint ANU/SMS/MRR-005-95, Australia Nat. Univ., Canberra, 1995 | MR

[6] L. D. Faddeev, R. M. Kashaev, Mod. Phys. Lett. A, 9 (1994), 427–434 ; E-print hep-th/9310070 | DOI | MR | Zbl