Supersymmetric integrable systems from geodesic flows on superconformal groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 182-188
We discuss the possible relation between geodesic flow, integrability, and supersymmetry, using fermionic extensions of the KdV equation and the recently introduced supersymmetrization of the Camassa–Holm equation as illustrative examples.
@article{TMF_2000_123_2_a2,
author = {C. Devchand and J. Schiff},
title = {Supersymmetric integrable systems from geodesic flows on superconformal groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {182--188},
year = {2000},
volume = {123},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a2/}
}
TY - JOUR AU - C. Devchand AU - J. Schiff TI - Supersymmetric integrable systems from geodesic flows on superconformal groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 182 EP - 188 VL - 123 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a2/ LA - ru ID - TMF_2000_123_2_a2 ER -
C. Devchand; J. Schiff. Supersymmetric integrable systems from geodesic flows on superconformal groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 182-188. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a2/
[1] M. V. Saveliev, Commun. Math. Phys., 95 (1984), 199–216 | DOI | MR | Zbl
[2] C. Devchand, J. Schiff, The supersymmetric Camassa–Holm equation and geodesic flow on the superconformal group, E-print solv-int/9811016 | MR
[3] C. Devchand, J. Schiff, The deconstruction of fermionic KdV systems, under preparation
[4] V. Yu. Ovsienko, B. A. Khesin, Funkts. analiz i ego prilozh., 21:4 (1987), 81–82 | MR
[5] N. S. Manton, J. Math. Phys., 40 (1999), 736–750 ; E-print hep-th/9806077 | DOI | MR | Zbl