Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 345-352
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a class of infinite-dimensional Lie algebras that generalize the universal enveloping algebra of the algebra $sl(2,\mathbb C)$ regarded as a Lie algebra. These algebras are a special case of $\mathbb Z$-graded Lie algebras with a continuous root system, namely, their Cartan subalgebra is the algebra of polynomials in one variable. The continuous limit of these algebras defines new Poisson brackets on algebraic surfaces.
@article{TMF_2000_123_2_a14,
     author = {A. M. Vershik and B. B. Shoikhet},
     title = {Graded {Lie} algebras whose {Cartan} subalgebra is the algebra of polynomials in one variable},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--352},
     year = {2000},
     volume = {123},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - B. B. Shoikhet
TI  - Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 345
EP  - 352
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/
LA  - ru
ID  - TMF_2000_123_2_a14
ER  - 
%0 Journal Article
%A A. M. Vershik
%A B. B. Shoikhet
%T Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 345-352
%V 123
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/
%G ru
%F TMF_2000_123_2_a14
A. M. Vershik; B. B. Shoikhet. Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 345-352. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/

[1] M. Saveliev, A. Vershik, Commun. Math. Phys., 126 (1989), 367–378 | DOI | MR | Zbl

[2] M. Saveliev, A. Vershik, Phys. Lett. A, 143:3 (1990), 121–128 | DOI | MR

[3] A. M. Vershik, Algebra i analiz, 4:6 (1992), 103–113 | MR | Zbl

[4] A. Vershik, “On classification of $\mathbb{Z}$-graded Lie algebras of constant growth which have algebra $\mathbb{C}[h]$ as Cartan subalgebra”, Quantum Groups, Proc. of Workshop (Euler International Mathematical Institute, Leningrad, Fall 1990), Lect. Notes Math., 1510, ed. P. P. Kulish, Springer, Berlin, 1992, 395 | DOI | MR

[5] B. L. Feigin, UMN, 43:2 (1988), 157–158 | MR

[6] B. Shoihet, J. Math. Sci., 92:2 (1998), 3764–3806 | DOI | MR

[7] J. Dixmier, J. Algebra, 24 (1973), 551–564 | DOI | MR | Zbl

[8] A. Josef, Isr. J. Math., 28:3 (1977), 177–192 | DOI | MR

[9] P. Smith, Trans. Am. Math. Soc., 322:1 (1990), 285–314 | DOI | MR | Zbl

[10] V. Kač, H. Radul, Commun. Math. Phys., 157 (1993), 429–457 | DOI | MR | Zbl

[11] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl