Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 345-352

Voir la notice de l'article provenant de la source Math-Net.Ru

We define a class of infinite-dimensional Lie algebras that generalize the universal enveloping algebra of the algebra $sl(2,\mathbb C)$ regarded as a Lie algebra. These algebras are a special case of $\mathbb Z$-graded Lie algebras with a continuous root system, namely, their Cartan subalgebra is the algebra of polynomials in one variable. The continuous limit of these algebras defines new Poisson brackets on algebraic surfaces.
@article{TMF_2000_123_2_a14,
     author = {A. M. Vershik and B. B. Shoikhet},
     title = {Graded {Lie} algebras whose {Cartan} subalgebra is the algebra of polynomials in one variable},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--352},
     publisher = {mathdoc},
     volume = {123},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - B. B. Shoikhet
TI  - Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 345
EP  - 352
VL  - 123
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/
LA  - ru
ID  - TMF_2000_123_2_a14
ER  - 
%0 Journal Article
%A A. M. Vershik
%A B. B. Shoikhet
%T Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 345-352
%V 123
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/
%G ru
%F TMF_2000_123_2_a14
A. M. Vershik; B. B. Shoikhet. Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 345-352. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/