@article{TMF_2000_123_2_a14,
author = {A. M. Vershik and B. B. Shoikhet},
title = {Graded {Lie} algebras whose {Cartan} subalgebra is the algebra of polynomials in one variable},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {345--352},
year = {2000},
volume = {123},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/}
}
TY - JOUR AU - A. M. Vershik AU - B. B. Shoikhet TI - Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 345 EP - 352 VL - 123 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/ LA - ru ID - TMF_2000_123_2_a14 ER -
%0 Journal Article %A A. M. Vershik %A B. B. Shoikhet %T Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 345-352 %V 123 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/ %G ru %F TMF_2000_123_2_a14
A. M. Vershik; B. B. Shoikhet. Graded Lie algebras whose Cartan subalgebra is the algebra of polynomials in one variable. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 345-352. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a14/
[1] M. Saveliev, A. Vershik, Commun. Math. Phys., 126 (1989), 367–378 | DOI | MR | Zbl
[2] M. Saveliev, A. Vershik, Phys. Lett. A, 143:3 (1990), 121–128 | DOI | MR
[3] A. M. Vershik, Algebra i analiz, 4:6 (1992), 103–113 | MR | Zbl
[4] A. Vershik, “On classification of $\mathbb{Z}$-graded Lie algebras of constant growth which have algebra $\mathbb{C}[h]$ as Cartan subalgebra”, Quantum Groups, Proc. of Workshop (Euler International Mathematical Institute, Leningrad, Fall 1990), Lect. Notes Math., 1510, ed. P. P. Kulish, Springer, Berlin, 1992, 395 | DOI | MR
[5] B. L. Feigin, UMN, 43:2 (1988), 157–158 | MR
[6] B. Shoihet, J. Math. Sci., 92:2 (1998), 3764–3806 | DOI | MR
[7] J. Dixmier, J. Algebra, 24 (1973), 551–564 | DOI | MR | Zbl
[8] A. Josef, Isr. J. Math., 28:3 (1977), 177–192 | DOI | MR
[9] P. Smith, Trans. Am. Math. Soc., 322:1 (1990), 285–314 | DOI | MR | Zbl
[10] V. Kač, H. Radul, Commun. Math. Phys., 157 (1993), 429–457 | DOI | MR | Zbl
[11] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl