The duality of quantum Liouville field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 299-307
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has been found empirically that the Virasoro center and three-point functions of quantum Liouville field theory with the potential $\exp\bigl(2b\phi(x)\bigr)$ and the external primary fields $\exp\bigl(\alpha\phi(x)\bigr)$ are invariant with respect to the duality transformations $\hbar\alpha\rightarrow q-\alpha$, where $q=b^{-1}+b$. The steps leading to this result (via the Virasoro algebra and three-point functions) are reviewed in the path-integral formalism. The duality occurs because the quantum relationship between the $\alpha$ and the conformal weights $\Delta_\alpha$ is two-to-one. As a result, the quantum Liouville potential can actually contain two exponentials (with related parameters). In the two-exponential theory, the duality appears naturally, and an important previously conjectured extrapolation can be proved.
@article{TMF_2000_123_2_a10,
     author = {L. O'Raifeartaigh and J. M. Pawlowski and V. V. Sreedhar},
     title = {The duality of quantum {Liouville} field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {299--307},
     year = {2000},
     volume = {123},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a10/}
}
TY  - JOUR
AU  - L. O'Raifeartaigh
AU  - J. M. Pawlowski
AU  - V. V. Sreedhar
TI  - The duality of quantum Liouville field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 299
EP  - 307
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a10/
LA  - ru
ID  - TMF_2000_123_2_a10
ER  - 
%0 Journal Article
%A L. O'Raifeartaigh
%A J. M. Pawlowski
%A V. V. Sreedhar
%T The duality of quantum Liouville field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 299-307
%V 123
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a10/
%G ru
%F TMF_2000_123_2_a10
L. O'Raifeartaigh; J. M. Pawlowski; V. V. Sreedhar. The duality of quantum Liouville field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 2, pp. 299-307. http://geodesic.mathdoc.fr/item/TMF_2000_123_2_a10/

[1] H. Poincaré, J. Math. Pure Appl., 5:4 (1898), 157

[2] A. Polyakov, Phys. Lett. B, 103 (1981), 207 | DOI | MR

[3] J.-L. Gervais, A. Neveu, Nucl. Phys. B, 238 (1984), 125 | DOI | MR

[4] H. Dorn, H.-J. Otto, Phys. Lett. B, 291 (1992), 39 ; Nucl. Phys. B, 429 (1994), 375 | DOI | MR | DOI | MR | Zbl

[5] A. Zamolodchikov, Al. Zamolodchikov, Nucl. Phys. B, 477 (1996), 577 ; L. Baulieu, V. Kazakov, M. Picco, P. Windey (eds.), Low Dimensional Applications of Quantum Field Theory, NATO ASI Series B, Physics, 362, Plenum Press, 1997 ; J.-L. Gervais, A. Neveu, Nucl. Phys. B, 238 (1984), 396 ; 257[FS14] (1985), 59 | DOI | MR | Zbl | DOI | DOI | MR | DOI | MR

[6] T. Curtright, C. Thorn, Phys. Rev. Lett., 48 (1982), 1309 | DOI | MR

[7] E. Braaten, T. Curtright, C. Thorn, Phys. Lett., 118 (1982), 115 ; Ann. Phys., 147 (1983), 365 | DOI | MR | DOI | MR | Zbl

[8] E. D'Hoker, R. Jackiw, Phys. Rev. D, 26 (1982), 3517 | DOI | MR

[9] M. Goulian, M. Li, Phys. Rev. Lett., 66 (1991), 2051 | DOI

[10] Vl. Dotsenko, V. Fateev, Nucl. Phys. B, 251 (1985), 691 | DOI | MR

[11] J. Teschner, Phys. Lett. B, 363 (1995), 65 | DOI

[12] L. O'Raifeartaigh, J. M. Pawlowski, V. V. Sreedhar, Duality in Quantum Liouville Theory, E-print hep-th/9811090 | MR

[13] S. Dotsenko, Mod. Phys. Lett. A, 6 (1991), 3601 | DOI | MR | Zbl