Entropy of open quantum systems and the Poisson distribution
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 107-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The entropies of a harmonic oscillator and a quantum Klein–Gordon–Fock field with a static source are found in the coherent state. In both cases, the obtained expressions coincide up to a numerical factor with the Bekenstein–Hawking entropy for a black hole or, more precisely, for the physical vacuum around the hole. Such a coincidence and the property of a gravitational field to make a quantum system placed in this field decoherent lead to the assumption that the vacuum in the vicinity of a black hole is in a coherent state.
@article{TMF_2000_123_1_a9,
     author = {A. G. Bashkirov and A. D. Sukhanov},
     title = {Entropy of open quantum systems and the {Poisson} distribution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {107--115},
     year = {2000},
     volume = {123},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a9/}
}
TY  - JOUR
AU  - A. G. Bashkirov
AU  - A. D. Sukhanov
TI  - Entropy of open quantum systems and the Poisson distribution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 107
EP  - 115
VL  - 123
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a9/
LA  - ru
ID  - TMF_2000_123_1_a9
ER  - 
%0 Journal Article
%A A. G. Bashkirov
%A A. D. Sukhanov
%T Entropy of open quantum systems and the Poisson distribution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 107-115
%V 123
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a9/
%G ru
%F TMF_2000_123_1_a9
A. G. Bashkirov; A. D. Sukhanov. Entropy of open quantum systems and the Poisson distribution. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 107-115. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a9/

[1] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[2] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[3] M. B. Menskii, UFN, 168:9 (1998), 1017 | DOI

[4] W. H. Zurek, S. Habib, J. P. Paz, Phys. Rev. Lett., 70 (1993), 1187 | DOI

[5] M. Tegmark, H. S. Shapiro, Phys. Rev. E, 50 (1994), 2538 | DOI

[6] J. P. Paz, W. H. Zurek, Quantum limit of decoherence: environment induces superselection of energy eigenstates, E-print qu-ph/9811026

[7] D. N. Page, Phys. Rev. Lett., 71 (1993), 1291 | DOI | MR | Zbl

[8] H.-T. Elze, Open quantum systems, entropy and chaos, E-print qu-ph/9710063

[9] B. S. Kay, Entropy defined, entropy encrease and decoherence understood, and some black-hole puzzles solved, E-print hep-th/9802172

[10] M. Mensky, A. Konetchnyi, V. Namiot, Phys. Lett. A, 177 (1993), 283 | DOI | MR

[11] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1989 | MR

[12] E. Khenli, V. Tirring, Elementarnaya kvantovaya teoriya polya, IL, M., 1963 | MR

[13] J. D. Bekenstein, Lett. Nuovo Cimento, 4 (1972), 737 | DOI

[14] S. W. Hawking, Commun. Math. Phys., 43 (1975), 199 | DOI | MR | Zbl

[15] J. D. Bekenstein, Phys. Rev. D, 7 (1973), 2333 | DOI | MR

[16] V. Frolov, I. Novikov, Phys. Rev. D, 48 (1993), 4545 | DOI | MR

[17] V. Frolov, Phys. Rev. Lett., 74 (1995), 3319 | DOI | MR | Zbl

[18] V. P. Frolov, D. V. Fursaev, A. I. Zelnikov, Black hole entropy: thermodynamics, statistical mechanics and subtraction procedure, E-print hep-th/9603175 | MR

[19] J. D. Bekenstein, Quantum black holes as atoms, E-print gr-qc/9710076 | MR

[20] S. W. Hawking, Commun. Math. Phys., 87 (1982), 395 | DOI | MR | Zbl

[21] J. Ellis, S. Mohanty, D. V. Nanopoulos, Phys. Lett. B, 221 (1989), 113 | DOI

[22] A. D. Sukhanov, “On the global interconnection between quantum dynamics and thermodynamics”, Proceedings of the XI International Conference “Problems of Quantum Field Theory” (Dubna, 1998), eds. B. M. Barbashov, G. V. Efimov, A. S. Efremov, JINR, Dubna, 1999, 232