Stochastic model of phase transition and metastability
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 94-106

Voir la notice de l'article provenant de la source Math-Net.Ru

The evolution of a system with phase transition is simulated by a Markov process whose transition probabilities depend on a parameter. The change of the stationary distribution of the Markov process with a change of this parameter is interpreted as a phase transition of the system from one thermodynamic equilibrium state to another. Calculations and computer experiments are performed for condensation of a vapor. The sample paths of the corresponding Markov process have parts where the radius of condensed drops is approximately constant. These parts are interpreted as metastable states. Two metastable states occur, initial (gaseous steam) and intermediate (fog). The probability distributions of the drop radii in the metastable states are estimated.
@article{TMF_2000_123_1_a8,
     author = {A. I. Kirillov and V. Yu. Mamakin},
     title = {Stochastic model of phase transition and metastability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {94--106},
     publisher = {mathdoc},
     volume = {123},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a8/}
}
TY  - JOUR
AU  - A. I. Kirillov
AU  - V. Yu. Mamakin
TI  - Stochastic model of phase transition and metastability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 94
EP  - 106
VL  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a8/
LA  - ru
ID  - TMF_2000_123_1_a8
ER  - 
%0 Journal Article
%A A. I. Kirillov
%A V. Yu. Mamakin
%T Stochastic model of phase transition and metastability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 94-106
%V 123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a8/
%G ru
%F TMF_2000_123_1_a8
A. I. Kirillov; V. Yu. Mamakin. Stochastic model of phase transition and metastability. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 94-106. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a8/