Stochastic model of phase transition and metastability
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 94-106
Voir la notice de l'article provenant de la source Math-Net.Ru
The evolution of a system with phase transition is simulated by a Markov process whose transition probabilities depend on a parameter. The change of the stationary distribution of the Markov process with a change of this parameter is interpreted as a phase transition of the system from one thermodynamic equilibrium state to another. Calculations and computer experiments are performed for condensation of a vapor. The sample paths of the corresponding Markov process have parts where the radius of condensed drops is approximately constant. These parts are interpreted as metastable states. Two metastable states occur, initial (gaseous steam) and intermediate (fog). The probability distributions of the drop radii in the metastable states are estimated.
@article{TMF_2000_123_1_a8,
author = {A. I. Kirillov and V. Yu. Mamakin},
title = {Stochastic model of phase transition and metastability},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {94--106},
publisher = {mathdoc},
volume = {123},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a8/}
}
TY - JOUR AU - A. I. Kirillov AU - V. Yu. Mamakin TI - Stochastic model of phase transition and metastability JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 94 EP - 106 VL - 123 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a8/ LA - ru ID - TMF_2000_123_1_a8 ER -
A. I. Kirillov; V. Yu. Mamakin. Stochastic model of phase transition and metastability. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 94-106. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a8/