Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 88-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Ising model on a Bethe lattice of order $k\geq2$ is considered. For maximum or minimum translation-invariant Gibbs states of this model, the relations between the von Neumann algebras generated by these states for the Gelfand–Neimark–Segal representation are found. These algebras can be of types $\mathrm{III}_\lambda$, $\lambda\in(0,1)$, and $\mathrm{III}_1$.
@article{TMF_2000_123_1_a7,
     author = {F. M. Mukhamedov},
     title = {Von {Neumann} algebras generated by translation-invariant {Gibbs} states of the {Ising} model on a {Bethe} lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {88--93},
     year = {2000},
     volume = {123},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a7/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
TI  - Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 88
EP  - 93
VL  - 123
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a7/
LA  - ru
ID  - TMF_2000_123_1_a7
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%T Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 88-93
%V 123
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a7/
%G ru
%F TMF_2000_123_1_a7
F. M. Mukhamedov. Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 88-93. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a7/

[1] O. Bratteli, D. Robinson, Operator algebras and Quantum Statistical Mechanics, V. II, Springer-Verlag, Berlin, 1981 | MR | Zbl

[2] U. Bratelli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, T. I, Mir, M., 1982 | MR

[3] R. L. Dobrushin, Teor. veroyatn. i ee primen., 13:2 (1968), 201–229 | MR

[4] C. M. Series, Ya. G. Sinai, Commun. Math. Phys., 128 (1990), 63–76 | DOI | MR | Zbl

[5] P. M. Blekher, N. N. Ganikhodzhaev, Teor. veroyatn. i ee primen., 35:2 (1990), 220–230 | MR | Zbl

[6] N. N. Ganikhodzhaev, U. A. Rozikov, TMF, 111:1 (1997), 109–117 | DOI | MR | Zbl

[7] R. Powers, Ann. Math., 81 (1967), 138–171 | DOI | MR

[8] N. N. Ganikhodjaev, F. M. Mukhamedov, Methods Funct. Anal. Topol., 4:3 (1998), 33–38 | MR

[9] V. Ya. Golodets, G. N. Zholtkevich, TMF, 56:1 (1983), 80–86 | MR

[10] R. Bekster, Tochno reshaemye modeli v statisticheskoi fizike, Mir, M., 1985 | MR

[11] A. Connes, Ann. Sci. Ec. Norm. Super. IV. Ser. 6, 1973, 133–252 | MR | Zbl

[12] S. Stratila, L. Zsido, Lectures on von Neumann algebras, Editura Academici Abacus Press, Bucuresti, 1979 | MR | Zbl

[13] S. Stratila, Modular theory in operator algebras, Abacus Press, Bucuresti, 1981 | MR | Zbl

[14] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR

[15] P. M. Bleher, Commun. Math. Phys., 128 (1990), 411–419 | DOI | MR | Zbl

[16] L. Akkardi, Funk. analiz i ego prilozh., 8:1 (1975), 1–8 | MR