Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 88-93
Voir la notice de l'article provenant de la source Math-Net.Ru
The Ising model on a Bethe lattice of order $k\geq2$ is considered. For maximum or minimum translation-invariant Gibbs states of this model, the relations between the von Neumann algebras generated by these states for the Gelfand–Neimark–Segal representation are found. These algebras can be of types $\mathrm{III}_\lambda$, $\lambda\in(0,1)$, and $\mathrm{III}_1$.
@article{TMF_2000_123_1_a7,
author = {F. M. Mukhamedov},
title = {Von {Neumann} algebras generated by translation-invariant {Gibbs} states of the {Ising} model on a {Bethe} lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {88--93},
publisher = {mathdoc},
volume = {123},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a7/}
}
TY - JOUR AU - F. M. Mukhamedov TI - Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 88 EP - 93 VL - 123 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a7/ LA - ru ID - TMF_2000_123_1_a7 ER -
%0 Journal Article %A F. M. Mukhamedov %T Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 88-93 %V 123 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a7/ %G ru %F TMF_2000_123_1_a7
F. M. Mukhamedov. Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 88-93. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a7/