Essential Schrödinger operator spectrum of one system of four particles on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 81-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The energy operator of a system of four particles on a lattice where only two pairs of the particles interact is considered. There exist four mutually orthogonal subspaces, invariant with respect to the energy operator and such that their direct sum is equal to the entire space. The spectra of the restrictions of the energy operator to these invariant spaces are found. The dependence of the essential spectrum on the binary interaction is examined. The absence of bound states of this operator is demonstrated.
@article{TMF_2000_123_1_a6,
     author = {Zh. I. Abdullaev},
     title = {Essential {Schr\"odinger} operator spectrum of one system of four particles on a lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {81--87},
     year = {2000},
     volume = {123},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a6/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
TI  - Essential Schrödinger operator spectrum of one system of four particles on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 81
EP  - 87
VL  - 123
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a6/
LA  - ru
ID  - TMF_2000_123_1_a6
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%T Essential Schrödinger operator spectrum of one system of four particles on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 81-87
%V 123
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a6/
%G ru
%F TMF_2000_123_1_a6
Zh. I. Abdullaev. Essential Schrödinger operator spectrum of one system of four particles on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 81-87. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a6/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[2] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR

[3] Kh. Tsikon, R. Frezi, V. Kirish, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[4] E. Shmid, Kh. Tsigelman, Problemy trekh tel v kvantovoi mekhanike, Nauka, M., 1979 | MR | Zbl

[5] D. C. Mattis, Rev. Mod. Phys., 58:2 (1986), 361–379 | DOI | MR

[6] S. N. Lakaev, TMF, 89:1 (1991), 94–104 | MR

[7] S. N. Lakaev, Funkts. analiz i ego prilozh., 27:3 (1993), 15–28 | MR | Zbl

[8] S. N. Lakaev, Zh. I. Abdullaev, Usp. matem. nauk, 53:3 (1998), 201–203 | DOI | MR

[9] Zh. I. Abdullaev, S. N. Lakaev, TMF, 111:1 (1997), 94–108 | DOI | MR | Zbl