Bases and interbasis transformations for the $SU(2)$ monopole
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 44-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The variables in the Schrödinger equation for the bound "charge–$SU(2)$-monopole" system are separated in hyperspherical, parabolic, and spheroidal coordinates in the space $\mathbb R^5$. It is shown that the expansion coefficients of the parabolic basis with respect to the hyperspherical basis can be expressed in terms of the Clebsch–Gordon coefficients of the group $SU(2)$. Three-term recurrence relations are derived for the expansion coefficients of the spheroidal basis with respect to the hyperspherical and parabolic bases.
@article{TMF_2000_123_1_a3,
     author = {L. G. Mardoyan and A. N. Sisakyan and V. M. Ter-Antonyan},
     title = {Bases and interbasis transformations for the $SU(2)$ monopole},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {44--56},
     year = {2000},
     volume = {123},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a3/}
}
TY  - JOUR
AU  - L. G. Mardoyan
AU  - A. N. Sisakyan
AU  - V. M. Ter-Antonyan
TI  - Bases and interbasis transformations for the $SU(2)$ monopole
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 44
EP  - 56
VL  - 123
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a3/
LA  - ru
ID  - TMF_2000_123_1_a3
ER  - 
%0 Journal Article
%A L. G. Mardoyan
%A A. N. Sisakyan
%A V. M. Ter-Antonyan
%T Bases and interbasis transformations for the $SU(2)$ monopole
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 44-56
%V 123
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a3/
%G ru
%F TMF_2000_123_1_a3
L. G. Mardoyan; A. N. Sisakyan; V. M. Ter-Antonyan. Bases and interbasis transformations for the $SU(2)$ monopole. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 44-56. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a3/

[1] C. N. Yang, J. Math. Phys., 19 (1978), 320 | DOI | MR

[2] L. G. Mardoyan, A. N. Sissakian, V. M. Ter-Antonyan, Oscillator as a hidden non-Abelian monopole, Preprint E2-96-24, JINR, Dubna, 1996 ; E-print hep-th/9601093 | MR

[3] L. G. Mardoyan, A. N. Sisakyan, V. M. Ter-Antonyan, YaF, 61 (1998), 1859 | MR

[4] Kh. H. Karayan, L. G. Mardoyan, V. M. Ter-Antonyan, The Eulerian bound states: 5D Coulomb problem, Preprint E2-94-359, JINR, Dubna, 1994

[5] L. G. Mardoyan, A. N. Sissakian, V. M. Ter-Antonyan, Mod. Phys. Lett. A, 14 (1999), 1303 | DOI | MR

[6] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika, Nauka, M., 1974 | MR

[7] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1965 | MR

[8] L. G. Mardoyan, G. S. Pogosyan, V. M. Ter-Antonyan, Izv. AN Armyanskoi SSR. Fizika, 19 (1984), 3

[9] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[10] M. Kibler, G. Grenet, J. Math. Phys., 21 (1980), 422 | DOI | MR | Zbl