Geometric description of a relativistic string
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 38-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical three-dimensional relativistic string theory is considered in terms of world sheet quadratic forms. Taking the second quadratic form, not only the first one, into account is essential. A system of nonlinear evolution equations describing the string dynamics at the surface of primary constraints in a conformally invariant manner is derived. The results are generalized to the four-dimensional case.
@article{TMF_2000_123_1_a2,
     author = {S. V. Talalov},
     title = {Geometric description of a relativistic string},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {38--43},
     publisher = {mathdoc},
     volume = {123},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a2/}
}
TY  - JOUR
AU  - S. V. Talalov
TI  - Geometric description of a relativistic string
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 38
EP  - 43
VL  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a2/
LA  - ru
ID  - TMF_2000_123_1_a2
ER  - 
%0 Journal Article
%A S. V. Talalov
%T Geometric description of a relativistic string
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 38-43
%V 123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a2/
%G ru
%F TMF_2000_123_1_a2
S. V. Talalov. Geometric description of a relativistic string. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 38-43. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a2/