Electrostatics in a locally flat space with conical singularities
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 150-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the potential of a pointlike source in a multicenter three-dimensional space–time and obtain general relations between the values of the regularized self-energy, force, and force moment. The self-action effects as well as the relative contribution of higher multipoles infinitely increase as the angle deficit increases. The results obtained are generalized to a system of parallel cosmic strings one of which carries a current. The case of string with a finite thickness is also considered.
@article{TMF_2000_123_1_a12,
     author = {Yu. V. Grats and A. A. Rossikhin},
     title = {Electrostatics in a locally flat space with conical singularities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {150--162},
     year = {2000},
     volume = {123},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a12/}
}
TY  - JOUR
AU  - Yu. V. Grats
AU  - A. A. Rossikhin
TI  - Electrostatics in a locally flat space with conical singularities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 150
EP  - 162
VL  - 123
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a12/
LA  - ru
ID  - TMF_2000_123_1_a12
ER  - 
%0 Journal Article
%A Yu. V. Grats
%A A. A. Rossikhin
%T Electrostatics in a locally flat space with conical singularities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 150-162
%V 123
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a12/
%G ru
%F TMF_2000_123_1_a12
Yu. V. Grats; A. A. Rossikhin. Electrostatics in a locally flat space with conical singularities. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 150-162. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a12/

[1] G. W. Gibbons, S. W. Hawking, T. Vachaspati (eds.), The Formation and Evolution of Cosmic Strings, Cambridge University Press, Cambridge, 1990

[2] C. Callan, F. Wilczek, Phys. Lett. B, 333 (1994), 55 ; L. Susskind, J. Uglum, Phys. Rev. D, 50 (1994), 2700 ; A. I. Barvinski, V. P. Frolov, A. I. Zelnikov, Phys. Rev. D, 51 (1995), 1741 ; S. N. Solodukhin, Phys. Rev. D, 51 (1995), 609 | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[3] D. V. Fursaev, G. Miele, Phys. Rev. D, 49 (1994), 987 | DOI | MR

[4] M. O. Katanaev, I. V. Volovich, Ann. Phys. (NY), 216 (1992), 1 | DOI | MR | Zbl

[5] G. E. Volovik, Pisma v ZhETF, 67:9 (1998), 666

[6] S. Deser, R. Jackiw, G. 't Hooft, Ann. Phys. (NY), 152 (1984), 220 | DOI | MR

[7] P. S. Letelier, Class. Q Grav., 4 (1987), L75 | DOI | MR

[8] D. D. Sokolov, A. A. Starobinskii, Dokl. AN SSSR, 234 (1977), 1043 | Zbl

[9] D. V. Galtsov, Yu. V. Grats, P. S. Letelier, Ann. Phys. (NY), 224 (1993), 90 | DOI | MR | Zbl

[10] T. M. Helliwell, D. A. Konkowski, Phys. Rev. D, 34 (1986), 1918 ; J. S. Dowker, Phys. Rev. D, 36 (1987), 3095 ; 3742 ; B. Linet, Phys. Rev. D, 35 (1987), 536 ; V. P. Frolov, E. M. Serebriany, Phys. Rev. D, 35 (1987), 3779 ; W. A. Hiscock, Phys. Lett. B, 188 (1987), 317 | DOI | DOI | DOI | MR | DOI | MR | DOI

[11] D. V. Galtsov, Yu. V. Grats, A. V. Lavrentev, YaF, 58 (1995), 570

[12] B. Linet, Phys. Rev. D, 33 (1986), 1833 | DOI

[13] Yu. V. Grats, A. Garcia, Class. Q Grav., 13 (1996), 189 | DOI | MR | Zbl

[14] E. R. Bezerra de Mello, V. B. Bezerra, Yu. V. Grats, Class. Q Grav., 15 (1998), 1915 | DOI | MR | Zbl

[15] E. R. Bezerra de Mello, V. B. Bezerra, Yu. V. Grats, Mod. Phys. Lett. A, 13 (1998), 1427 | DOI | MR

[16] D. V. Galtsov, Yu. V. Grats, A. V. Lavrentev, Pisma v ZhETF, 59 (1994), 359

[17] D. P. Bennett, F. R. Bouchet, Phys. Rev. D, 41 (1990), 2408 | DOI

[18] V. S. Vladimirov, Uravneniya matematicheskoi fiziii, Nauka, M., 1981 | MR

[19] A. Z. Petrov, Prostranstva Einshteina, Fizmatgiz, M., 1961 | MR | Zbl

[20] S. M. Christensen, Phys. Rev. D, 14 (1976), 2490 | DOI | MR

[21] L. Parker, Phys. Rev. D, 24 (1981), 535 | DOI