A crystal with a singular potential in a homogeneous electric field
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 132-149

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of solutions to the one-dimensional Schrödinger equation $-\psi''+q(x)\psi-Fx\psi=E\psi$ for large arguments. We assume that the potential $q$ is a periodic function and is absolutely integrable over the period. We show that the spectral problem for the original Schrödinger equation can be reduced to the spectral problem for a discrete system. If the potential $q$ is smooth, the transition matrix tends to the unit matrix rapidly; if $q$ is not smooth, the transition matrix tends to the unit matrix slowly, and the discrete system demonstrates random properties. This explains why the spectrum of the original equation has remained practically unexplored.
@article{TMF_2000_123_1_a11,
     author = {A. A. Pozharskii},
     title = {A crystal with a singular potential in a homogeneous electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {132--149},
     publisher = {mathdoc},
     volume = {123},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a11/}
}
TY  - JOUR
AU  - A. A. Pozharskii
TI  - A crystal with a singular potential in a homogeneous electric field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 132
EP  - 149
VL  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a11/
LA  - ru
ID  - TMF_2000_123_1_a11
ER  - 
%0 Journal Article
%A A. A. Pozharskii
%T A crystal with a singular potential in a homogeneous electric field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 132-149
%V 123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a11/
%G ru
%F TMF_2000_123_1_a11
A. A. Pozharskii. A crystal with a singular potential in a homogeneous electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 132-149. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a11/