Cohomology of arbitrary spin currents in $\mathrm{AdS}_3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 3-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We study conserved currents of any integer or half-integer spin built from massless scalar and spinor fields in $\mathrm{AdS}_3$. We show that 2-forms dual to the conserved currents in $\mathrm{AdS}_3$ are exact in the class of infinite expansions in higher derivatives of the matter fields with the coefficients containing inverse powers of the cosmological constant. This property has no analogue in the flat space and may be related to the holography of the AdS spaces. “Improvements” to the physical currents are described as the trivial local current cohomology class. A complex $(T^s,\mathcal D)$ of spin-$s$ currents is defined, and the cohomology group $H^1(T^s,\mathcal D)=\mathbb C^{2s+1}$ is found.
@article{TMF_2000_123_1_a0,
     author = {M. A. Vasiliev and S. F. Prokushkin},
     title = {Cohomology of arbitrary spin currents in $\mathrm{AdS}_3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {123},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a0/}
}
TY  - JOUR
AU  - M. A. Vasiliev
AU  - S. F. Prokushkin
TI  - Cohomology of arbitrary spin currents in $\mathrm{AdS}_3$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 3
EP  - 25
VL  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a0/
LA  - ru
ID  - TMF_2000_123_1_a0
ER  - 
%0 Journal Article
%A M. A. Vasiliev
%A S. F. Prokushkin
%T Cohomology of arbitrary spin currents in $\mathrm{AdS}_3$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 3-25
%V 123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a0/
%G ru
%F TMF_2000_123_1_a0
M. A. Vasiliev; S. F. Prokushkin. Cohomology of arbitrary spin currents in $\mathrm{AdS}_3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 123 (2000) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/TMF_2000_123_1_a0/