The hybrid renormalization
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 400-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a renormalization scheme that combines elements of the higher-derivative regularization and the dimensional regularization. On the one hand, this scheme involves only four-component spinors and therefore does not suffer from the "$\gamma_5$-problem". On the other hand, it enables the minimal subtraction procedure. Our scheme can be useful in supersymmetric chiral gauge models.
@article{TMF_2000_122_3_a6,
     author = {D. A. Slavnov},
     title = {The hybrid renormalization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {400--416},
     year = {2000},
     volume = {122},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a6/}
}
TY  - JOUR
AU  - D. A. Slavnov
TI  - The hybrid renormalization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 400
EP  - 416
VL  - 122
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a6/
LA  - ru
ID  - TMF_2000_122_3_a6
ER  - 
%0 Journal Article
%A D. A. Slavnov
%T The hybrid renormalization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 400-416
%V 122
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a6/
%G ru
%F TMF_2000_122_3_a6
D. A. Slavnov. The hybrid renormalization. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 400-416. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a6/

[1] D. A. Slavnov, TMF, 110 (1997), 399 | DOI | MR | Zbl

[2] D. A. Slavnov, TMF, 114 (1998), 148 | DOI | MR | Zbl

[3] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | Zbl

[4] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[5] K. G. Wilson, Phys. Rev. D, 7 (1973), 2911 | DOI | MR

[6] Dzh. Kollinz, Perenormirovka, Mir, M., 1988 | MR

[7] K. Itsikson, Zh. B Zyuber, Kvantovaya teoriya polya, T. 1, 2, Mir, M., 1984 | MR

[8] C. Becchi, A. Rouet, R. Stora, Commun. Math. Phys., 42 (1975), 127 | DOI | MR

[9] I. V. Tyutin, Kalibrovochnaya invariantnost v teorii polya i v statisticheskoi fizike v operatornoi formulirovke, Preprint FIAN No 39, FIAN, M., 1975

[10] J. Wess, B. Zumino, Phys. Lett. B, 49 (1974), 52 | DOI

[11] J. Wess, B. Zumino, Nucl. Phys. B, 70 (1974), 39 | DOI | MR

[12] J. Iliopoulos, B. Zumino, Nucl. Phys. B, 76 (1974), 310 | DOI

[13] G. 't Hooft, M. Veltman, Nucl. Phys. B, 44 (1972), 189 | DOI | MR

[14] W. Siegl, Phys. Lett. B, 84 (1979), 193 | DOI | MR

[15] W. Siegl, Phys. Lett. B, 94 (1980), 37 | DOI | MR

[16] L. V. Avdeev, A. A. Vladimirov, Nucl. Phys. B, 219 (1983), 262 | DOI

[17] S. Ferrara, O. Piguet, Nucl. Phys. B, 93 (1975), 261 | DOI | MR

[18] O. Piguet, A. Rouet, Nucl. Phys. B, 108 (1976), 265 | DOI