Fermions in strong external fields in $2+1$ and $1+1$ dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 372-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The creation of electron-positron pairs from a vacuum by an external Coulomb field is examined within $(2+1)$-dimensional quantum electrodynamics. If the electromagnetic coupling constant exceeds $0.62$ $(Z=85)$, then in a simple model with a finite-size nucleus, the lower electron level crosses the boundary of the negative-energy continuum (i.e., Dirac sea), and a hole (i.e., positively charged fermion) appears in the negative-energy continuum. An equation is obtained that describes the levels of the ground and excited electron states in a strong Coulomb field of the nucleus. The critical nucleus charge is found for a few lowest electron states. The critical charge in $2+1$ dimensions is significantly smaller than in $3+1$ dimensions. The problem is reduced to the case of a bounded Coulomb field in $1+1$ dimensions without a magnetic field. The interaction of a fermion and an external scalar field in $2+1$ and $1+1$ dimensions is investigated.
@article{TMF_2000_122_3_a4,
     author = {V. R. Khalilov},
     title = {Fermions in strong external fields in $2+1$ and $1+1$ dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {372--384},
     year = {2000},
     volume = {122},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a4/}
}
TY  - JOUR
AU  - V. R. Khalilov
TI  - Fermions in strong external fields in $2+1$ and $1+1$ dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 372
EP  - 384
VL  - 122
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a4/
LA  - ru
ID  - TMF_2000_122_3_a4
ER  - 
%0 Journal Article
%A V. R. Khalilov
%T Fermions in strong external fields in $2+1$ and $1+1$ dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 372-384
%V 122
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a4/
%G ru
%F TMF_2000_122_3_a4
V. R. Khalilov. Fermions in strong external fields in $2+1$ and $1+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 372-384. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a4/

[1] A. M. J. Schakel, G. W. Semenoff, Phys. Rev. Lett., 66 (1991), 2653 | DOI

[2] A. Neagu, A. M. J. Schakel, Phys. Rev. D, 48 (1993), 1785 | DOI

[3] V. R. Khalilov, Electrons in Strong Electromagnetic Fields: an Advanced Classical and Quantum Treatment, Gordon Breach Sci. Publ., Amsterdam, 1996

[4] S. S. Gershtein, Ya. B. Zeldovich, ZhETF, 57 (1969), 654 | MR

[5] J. Reinhardt, W. Greiner, Rep. Progr. Phys., 40 (1977), 219 | DOI

[6] J. Rafelski, L. P. Fulcher, A. Klein, Phys. Rep. C, 38 (1978), 227 | DOI

[7] M. Soffel, B. Müller, W. Greiner, Phys. Rep. C, 85 (1982), 51 | DOI | MR

[8] V. S. Popov, Elektrodinamika sverkhsilnykh kulonovskikh polei ($Z>137$), Preprint ITEF-169, ITEF, M., 1980

[9] Ya. B. Zeldovich, V. S. Popov, UFN, 105 (1971), 403 | DOI | MR

[10] A. B. Migdal, Fermiony i bozony v silnykh polyakh, Nauka, M., 1978

[11] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Vakuumnye kvantovye effekty v silnykh polyakh, Energoatomizdat, M., 1988

[12] V. R. Khalilov, C. L. Ho, Mod. Phys. Lett. A, 13 (1998), 615 | DOI

[13] I. Pomeranchuk, Ya. Smorodinsky, J. Phys. USSR, 9 (1945), 97

[14] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[15] R. Jackiw, C. Rebbi, Phys. Rev. D, 13 (1976), 3398 | DOI | MR

[16] R. Radzharaman, Solitony i instantony v kvantovoi teorii polya, Mir, M., 1985