Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 357-371
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain formal solutions of the equation $i\varepsilon dy/dt=A(t)y$ in the form of complete asymptotic expansions as $\varepsilon\to0$ on intervals containing parabolic or hyperbolic turning points. The highest orders of the power series in $\varepsilon$ for the formal solutions are studied in detail.
@article{TMF_2000_122_3_a3,
author = {E. A. Grinina},
title = {Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {357--371},
publisher = {mathdoc},
volume = {122},
number = {3},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/}
}
TY - JOUR AU - E. A. Grinina TI - Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 357 EP - 371 VL - 122 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/ LA - ru ID - TMF_2000_122_3_a3 ER -
%0 Journal Article %A E. A. Grinina %T Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 357-371 %V 122 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/ %G ru %F TMF_2000_122_3_a3
E. A. Grinina. Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 357-371. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/