Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 357-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain formal solutions of the equation $i\varepsilon dy/dt=A(t)y$ in the form of complete asymptotic expansions as $\varepsilon\to0$ on intervals containing parabolic or hyperbolic turning points. The highest orders of the power series in $\varepsilon$ for the formal solutions are studied in detail.
@article{TMF_2000_122_3_a3,
     author = {E. A. Grinina},
     title = {Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {357--371},
     year = {2000},
     volume = {122},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/}
}
TY  - JOUR
AU  - E. A. Grinina
TI  - Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 357
EP  - 371
VL  - 122
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/
LA  - ru
ID  - TMF_2000_122_3_a3
ER  - 
%0 Journal Article
%A E. A. Grinina
%T Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 357-371
%V 122
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/
%G ru
%F TMF_2000_122_3_a3
E. A. Grinina. Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 357-371. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/

[1] V. Buslaev, A. Grigis, Turning points, Preprint No 98-21, Mathemetiques de l'Universite Paris-Nord, 1998

[2] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1972 | MR

[3] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1969 | MR

[4] V. S. Buldyrev, S. Yu. Slavyanov, “Regulyarizatsiya fazovykh integralov vblizi vershiny barera”, Problemy matematicheskoi fiziki. Vyp. 10. Spektralnaya teoriya. Volnovye protsessy, eds. M. Sh. Birman i dr., Izd-vo Leningradskogo universiteta, L., 1982, 50–70 | MR