Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 357-371

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain formal solutions of the equation $i\varepsilon dy/dt=A(t)y$ in the form of complete asymptotic expansions as $\varepsilon\to0$ on intervals containing parabolic or hyperbolic turning points. The highest orders of the power series in $\varepsilon$ for the formal solutions are studied in detail.
@article{TMF_2000_122_3_a3,
     author = {E. A. Grinina},
     title = {Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {357--371},
     publisher = {mathdoc},
     volume = {122},
     number = {3},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/}
}
TY  - JOUR
AU  - E. A. Grinina
TI  - Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 357
EP  - 371
VL  - 122
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/
LA  - ru
ID  - TMF_2000_122_3_a3
ER  - 
%0 Journal Article
%A E. A. Grinina
%T Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 357-371
%V 122
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/
%G ru
%F TMF_2000_122_3_a3
E. A. Grinina. Solution of the operator equation $i\varepsilon dy/dt=A(t)y$ on intervals containing turning points. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 357-371. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a3/