Universal Verma modules and $W$-resolvents over Kač–Moody algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 334-356 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider new aspects of extremal equations over symmetrizable Kač–Moody algebras. We develop new methods (reproducing classical finite-dimensional results) that can be applied to infinite-dimensional (affine) Lie algebras. We describe special extensions of universal enveloping algebras, investigate the fine structure of $W$-resolvents, and use these methods to investigate “extremal projectors” over Kač–Moody algebras.
@article{TMF_2000_122_3_a2,
     author = {D. P. Zhelobenko},
     title = {Universal {Verma} modules and $W$-resolvents over {Ka\v{c}{\textendash}Moody} algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {334--356},
     year = {2000},
     volume = {122},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a2/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Universal Verma modules and $W$-resolvents over Kač–Moody algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 334
EP  - 356
VL  - 122
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a2/
LA  - ru
ID  - TMF_2000_122_3_a2
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Universal Verma modules and $W$-resolvents over Kač–Moody algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 334-356
%V 122
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a2/
%G ru
%F TMF_2000_122_3_a2
D. P. Zhelobenko. Universal Verma modules and $W$-resolvents over Kač–Moody algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 334-356. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a2/

[1] D. P. Zhelobenko, Dokl. AN SSSR, 273:4 (1983), 785–788 | MR | Zbl

[2] D. P. Zhelobenko, Predstavleniya reduktivnykh algebr Li, Nauka, M., 1994 | MR | Zbl

[3] M. Kashiwara, Alg. Groups and Related Topics, Adv. Stud. Pure Math., 6, 1985, 67–81 | MR | Zbl

[4] F. G. Malikov, B. D. Feigin, D. B. Fuks, Funkts. analiz i ego prilozh., 20 (1986), 25–37 | MR | Zbl

[5] D. P. Zhelobenko, Adv. Math. Sci., 175 (1996), 207–226 | MR

[6] D. P. Zhelobenko, Translyatornye algebry v teorii predstavlenii reduktivnykh algebr Li i dinamicheskie simmetrii. Teoretiko-gruppovye metody v fizike, T. 2, Nauka, M., 1986, S. 5–21 | MR

[7] D. P. Zhelobenko, I. T. Todorov, Invariance algebra of relativistic massless equations, Intern. report SISSA ICTP, ICTP, Triest, 1986

[8] A. Molev, A basis for representations of symplectic Lie algebras, Preprint Austr. Nat. Univ. MRR-012-98, 1998 | MR

[9] D. P. Zhelobenko, TMF, 118:2 (1999), 190–204 | DOI | MR | Zbl

[10] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | Zbl

[11] V. G. Kač, D. A. Kazhdan, Adv. in Math., 34 (1979), 97–108 | DOI | MR | Zbl

[12] N. N. Shapovalov, Funkts. analiz i ego prilozh., 6:4 (1972), 65–70 | MR | Zbl

[13] Zh. Diksme, Universalnye obertyvayuschie algebry, Mir, M., 1997 | MR

[14] D. P. Zhelobenko, Vestn. RUDN, 6:1 (1999), 82–94

[15] D. P. Zhelobenko, Izv. AN SSSR. Ser. matem., 52:4 (1988), 758–773

[16] V. G. Kač, Proc. Nat. Acad. Sci. USA, 81:6 (1984), 645–647 | DOI | MR | Zbl

[17] D. P. Zhelobenko, Funkts. analiz i ego prilozh., 27:3 (1993), 5–14 | MR

[18] D. P. Zhelobenko, On formal series and infinite products over Lie algebras. Lobatchevski Journ. Math., Russian Acad. Sci. Electronic Journ., http://www.cn.ru/tat en/science/ljm

[19] A. N. Leznov, M. V. Savelev, Funkts. analiz i ego prilozh., 8:4 (1974), 87–88 | MR | Zbl

[20] D. P. Zhelobenko, Funkts. analiz i ego prilozh., 21:3 (1987), 11–21 | MR | Zbl

[21] R. S. Asherova, Yu. F. Smirnov, V. N. Tolstoi, TMF, 8:2 (1971), 255–271 | MR | Zbl

[22] R. S. Asherova, Yu. F. Smirnov, V. N. Tolstoi, Mat. zametki, 26:1 (1979), 15–25 | MR | Zbl

[23] V. N. Tolstoi, UMN, 44:1 (1989), 211–212 | MR