An analytic method in general relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 482-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytic method, which Wu called the “Bochner technique”, has been used for fifty years to describe global Riemannian and Kдhler geometries. We use this method to describe conformally Killing vector fields and harmonic timelike vector fields on a Lorentzian manifold and to study hydrodynamic models of the Universe, the existence of closed spacelike sections, and the possibility of fibering Lorentzian manifolds.
@article{TMF_2000_122_3_a13,
     author = {S. E. Stepanov},
     title = {An analytic method in general relativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {482--496},
     year = {2000},
     volume = {122},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a13/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - An analytic method in general relativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 482
EP  - 496
VL  - 122
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a13/
LA  - ru
ID  - TMF_2000_122_3_a13
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T An analytic method in general relativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 482-496
%V 122
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a13/
%G ru
%F TMF_2000_122_3_a13
S. E. Stepanov. An analytic method in general relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 482-496. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a13/

[1] H. Wu, “The Bochner technique”, Proc. Beijing Symp. Differ. Geom. and Differ. Equat. (Aug. 18–Sept. 21, 1980), eds. S. S. Chern, Wen-tsuen Wu, Science-Press; Gordon-Breach, New York, 1982, 929–1071 | MR

[2] P. H. Berard, Bull. Amer. Math. Soc., 19:2 (1988), 371–406 | DOI | MR | Zbl

[3] W. Matthias, Bonn. Math. Schr., 1989, no. 198, 1–58

[4] I. J. Muzinich, J. Math. Phys., 27:5 (1986), 1393–1397 | DOI | MR

[5] M. Blau, Rep. Math. Phys., 25:1 (1988), 109–116 | DOI | MR | Zbl

[6] A. Romero, M. Sanchez, Proc. Amer. Math. Soc., 123 (1995), 2831–2833 | DOI | MR | Zbl

[7] A. Romero, M. Sanchez, Pacific J. Math., 186:1 (1998), 141–148 | DOI | MR | Zbl

[8] S. E. Stepanov, Izv. vuzov. Fizika, 1993, no. 6, 82–86

[9] S. E. Stepanov, Algebra i analiz, 10:4 (1998), 192–209 | Zbl

[10] S. E. Stepanov, Differentsialnaya geometriya mnogoobrazii figur, 1996, no. 27, 107–111 | Zbl

[11] S. E. Stepanov, Tensor, N S, 58 (1997), 245–255 | MR

[12] Dzh. Bim, P. Erlikh, Globalnaya lorentseva geometriya, Mir, M., 1985 | MR

[13] A. Besse, Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl

[14] Ch. Mizner, K. Torn, Dzh. Uiller, Gravitatsiya, T. 2, Mir, M., 1977 | MR

[15] D. Kramer i dr., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | MR

[16] Dzh. Sing, Obschaya teoriya otnositelnosti, IL, M., 1963

[17] S. Khoking, Dzh. Ellis, Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977

[18] S. E. Stepanov, TMF, 111:1 (1997), 32–43 | DOI | MR | Zbl

[19] S. E. Stepanov, Izv. vuzov. Fizika, 1996, no. 5, 90–93

[20] B. L. Reinhart, Differential geometry of foliations, Springer-Verlag, Berlin, 1983 | MR | Zbl

[21] S. E. Stepanov, Izv. vuzov. Matematika, 1999, no. 1, 61–68 | Zbl

[22] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR

[23] L. P. Eizenkhart, Rimanova geometriya, IL, M., 1948

[24] V. D. Zakharov, Gravitatsionnye volny v teorii tyagoteniya Einshteina, Nauka, M., 1972 | MR

[25] S. E. Stepanov, Izv. vuzov. Matematika, 1996, no. 9, 53–59 | MR | Zbl

[26] Helio V. Fagundes, Gen. Relat. Gravit., 24:2 (1992), 199–217 | DOI | MR | Zbl

[27] R. Penrouz, Struktura prostranstva-vremeni, Mir, M., 1972 | MR