Dispersion of Lagrangian trajectories in a random large-scale velocity field
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 456-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the distribution of the distance $R(t)$ between two Lagrangian trajectories in a spatially smooth turbulent velocity field with an arbitrary correlation time and a non-Gaussian distribution. There are two dimensionless parameters, the degree of deviation from the Gaussian distribution $\alpha$ and $\beta=\tau D$, where $\tau$ is the velocity correlation time and $D$ is a characteristic velocity gradient. Asymptotically, $R(t)$ has a lognormal distribution characterized by the mean runaway velocity $\bar\lambda$ and the dispersion $\Delta$. We use the method of higher space dimensions $d$ to estimate $\bar\lambda$ and $\Delta$ for different values of $\alpha$ and $\beta$. It was shown previously that $\bar\lambda\sim D$ for $\beta\ll1$ and $\bar\lambda\sim\sqrt{D/\tau}$ for $\beta\gg1$. The estimate of $\Delta$ is then nonuniversal and depends on details of the two-point velocity correlator. Higher-order velocity correlators give an additional contribution to $\Delta$ estimated as $\alpha D^2\tau$ for $\beta\ll1$ and $\alpha\beta/\tau$ for $\beta\gg1$. For $\alpha$ above some critical value $\alpha_\mathrm{cr}$, the values of $\bar\lambda$ and $\Delta$ are determined by higher irreducible correlators of the velocity gradient, and our approach loses its applicability. This critical value can be estimated as $\alpha_\mathrm{cr}\sim\beta^{-1}$ for $\beta\ll1$ and $\alpha_\mathrm{cr}\sim \beta^{-1/2}$ for $\beta\gg1$.
@article{TMF_2000_122_3_a11,
     author = {V. R. Kogan},
     title = {Dispersion of {Lagrangian} trajectories in a random large-scale velocity field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {456--467},
     year = {2000},
     volume = {122},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a11/}
}
TY  - JOUR
AU  - V. R. Kogan
TI  - Dispersion of Lagrangian trajectories in a random large-scale velocity field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 456
EP  - 467
VL  - 122
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a11/
LA  - ru
ID  - TMF_2000_122_3_a11
ER  - 
%0 Journal Article
%A V. R. Kogan
%T Dispersion of Lagrangian trajectories in a random large-scale velocity field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 456-467
%V 122
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a11/
%G ru
%F TMF_2000_122_3_a11
V. R. Kogan. Dispersion of Lagrangian trajectories in a random large-scale velocity field. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 3, pp. 456-467. http://geodesic.mathdoc.fr/item/TMF_2000_122_3_a11/

[1] G. Falkovich, V. Kazakov, V. Lebedev, Physica A, 249 (1998), 36 | DOI

[2] L. Richardson, Proc. Roy. Soc. London A, 110 (1926), 709 | DOI

[3] R. H. Kraichnan, Phys. Fluids, 7 (1964), 1723 ; 8 (1965), 575 | DOI | MR | Zbl | DOI | MR

[4] B. Shraiman, E. Siggia, Phys. Rev. E, 49 (1994), 2912 | DOI | MR

[5] R. H. Kraichnan, Phys. Fluids, 9 (1966), 1937 | DOI

[6] M. Lesieur, Turbulence in Fluids, Kluwer Acad. Publ., London, 1990 | MR | Zbl

[7] R. H. Kraichnan, Phys. Fluids, 11 (1968), 945 | DOI | MR | Zbl

[8] R. H. Kraichnan, J. Fluid Mech., 64 (1974), 737 | DOI | MR | Zbl

[9] G. Falkovich, I. Kolokolov, V. Lebedev, A. Migdal, Phys. Rev. E, 54 (1996), 4896 | DOI

[10] G. K. Batchelor, J. Fluid Mech., 5 (1959), 113 | DOI | MR | Zbl

[11] M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E, 51 (1995), 5609 | DOI | MR

[12] M. Chertkov, A. Gamba, I. Kolokolov, Phys. Lett. A, 192 (1994), 435 | DOI

[13] G. 't Hooft, Nucl. Phys. B, 72 (1974), 461 | DOI

[14] H. E. Stanley, Phys. Rev., 176 (1968), 718 | DOI

[15] H. W. Wyld, Ann. Phys., 14 (1961), 143 | DOI | MR | Zbl

[16] P. C. Martin, E. D. Siggia, H. A. Rose, Phys. Rev. A, 8 (1973), 423 | DOI

[17] S. K. Ma, Modern Theory of Critical Phenomena, Benjamin, New York, 1976

[18] C. de Dominicis, J. Phys. (Paris). Suppl. Colloque C-1, 37 (1976), 247

[19] H. K. Janssen, Z. Phys. B, 23 (1976), 377 | DOI | MR

[20] V. N. Popov, Funktsionalnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR