Graded Lie algebras, representation theory, integrable mappings, and integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 251-271
Voir la notice de l'article provenant de la source Math-Net.Ru
A new class of integrable mappings and chains is introduced. The corresponding $1+2$ integrable systems that are invariant under such integrable mappings are presented in an explicit form. Soliton-type solutions of these systems are constructed in terms of matrix elements of fundamental representations of semisimple $A_n$ algebras for a given group element. The possibility of generalizing this construction to the multidimensional case is discussed.
@article{TMF_2000_122_2_a8,
author = {A. N. Leznov},
title = {Graded {Lie} algebras, representation theory, integrable mappings, and integrable systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {251--271},
publisher = {mathdoc},
volume = {122},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a8/}
}
TY - JOUR AU - A. N. Leznov TI - Graded Lie algebras, representation theory, integrable mappings, and integrable systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 251 EP - 271 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a8/ LA - ru ID - TMF_2000_122_2_a8 ER -
A. N. Leznov. Graded Lie algebras, representation theory, integrable mappings, and integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 251-271. http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a8/