Binary Darboux transformations and $N$-wave systems in rings
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 239-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The covariance theorems for elementary and binary Darboux transformations in rings are formulated and proved for generalized Zakharov–Shabat problems. The definition of the elementary Darboux transformation is extended to an arbitrary number of orthogonal idempotents. The binary transformation is defined as a sequence of elementary transformations for direct and conjugate problems. The heredity property for the reduction constraints is established for some $UV$ pairs in rings; hence, the transformation generates solutions and infinitesimal symmetries of the corresponding zero-curvature equations. The explicit expressions for the transformations, solitons, and infinitesimals are given in the general case and in physically significant cases of extended non-Abelian $N$-wave equations (with linear terms added).
@article{TMF_2000_122_2_a7,
     author = {S. B. Leble},
     title = {Binary {Darboux} transformations and $N$-wave systems in rings},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--250},
     year = {2000},
     volume = {122},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a7/}
}
TY  - JOUR
AU  - S. B. Leble
TI  - Binary Darboux transformations and $N$-wave systems in rings
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 239
EP  - 250
VL  - 122
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a7/
LA  - ru
ID  - TMF_2000_122_2_a7
ER  - 
%0 Journal Article
%A S. B. Leble
%T Binary Darboux transformations and $N$-wave systems in rings
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 239-250
%V 122
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a7/
%G ru
%F TMF_2000_122_2_a7
S. B. Leble. Binary Darboux transformations and $N$-wave systems in rings. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 239-250. http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a7/

[1] S. B. Leble, N. V. Ustinov, “Deep reductions for matrix Lax system, invariant forms and elementary Darboux transforms”, Proceeding of NEEDS-92 Workshop, World Scientific, Singapore, 1993, 34–41 | MR

[2] S. B. Leble, A. A. Zaitsev, Rep. Math. Phys., 39 (1997), 177–183 | DOI | MR

[3] V. A. Marchenko, Nonlinear equations and Operator algebras, D. Reidel, Dordrecht, 1988 | MR | Zbl

[4] N. V. Ustinov, Preobrazovanie Darbu dlya spektralnykh zadach s reduktsiyami, Diss. ... kand. fiz.-mat. nauk, SPGU, Sankt-Peterburg, 1994

[5] V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer-Verlag, Berlin, 1991 | MR

[6] S. B. Leble, N. V. Ustinov, “Solitons of Nonlinear Equations Associated with Degenerate Spectral Problem of the Third Order”, International Symposium on Nonlinear Theory and its Applications (NOLTA 93), V. 4. Sec. 8-1 (Hawaii, U.S.A., December 5–10), 1993, 547–550

[7] S. B. Leble, Comp. Math. Appl., 35:10 (1998), 73–81 | DOI | MR | Zbl

[8] A. V. Mikhailov, Physica D, 3 (1981), 73–117 | DOI | Zbl

[9] S. B. Leble, M. Czachor, Darboux-integrable nonlinear Liouville–von Neumann equation, ; Phys. Rev. E, 58:6 (1998) E-print quant-ph/9804052 | MR | DOI

[10] W. Oevel, W. Schief, Rev. Math. Phys., 6 (1994), 1301–1338 | DOI | MR | Zbl

[11] S. P. Novikov, S. V. Manakov, L. P. Pitaevski, V. E. Zakharov, Theory of Solitons, Plenum, New York, 1984 | MR | Zbl

[12] V. E. Zakharov, “On the dressing method”, Proceedings of Conf. on Inverse Scattering, Springer-Verlag, Monpelier, 1989 | MR

[13] B. A. Dubrovin, Funkts. analiz i ego prilozh., 24:4 (1990), 25–30 | MR | Zbl

[14] P. A. Deift, L. C. Li, C. Tomei, Commun. Pure Appl. Math., 42 (1989), 443–521 | DOI | MR | Zbl

[15] V. E. Zakharov, A. V. Manakov, Pisma v ZhETF, 18:7 (1973), 413–415 | MR

[16] N. V. Ustinov, J. Math. Phys., 39:2 (1998), 976–985 | DOI | MR | Zbl

[17] V. B. Matveev, Darboux transformations in differential rings and Functional-Difference equations, Preprint MPI 96-170, MPI, Bonn, 1996 | MR