A retarded action functional for the Dirac polaron
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 231-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The ground-state characteristics of the one-dimensional (Dirac) polaron are considered as an example of a system with a retarded interaction functional. Using a path-integral approach, we estimate both the ground-state energy and the effective mass of the polaron within and beyond the most general Gaussian approximation. The leading-order Gaussian contribution to the self-energy slightly improves the Feynman estimate and belongs to the lowest upper bounds available. The next-to-leading non-Gaussian corrections do not significantly perturb the results obtained. For comparison, a lower bound to the ground-state energy is calculated using the Lieb–Yamazaki method.
@article{TMF_2000_122_2_a6,
     author = {G. Gandbold},
     title = {A retarded action functional for the {Dirac} polaron},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--238},
     year = {2000},
     volume = {122},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a6/}
}
TY  - JOUR
AU  - G. Gandbold
TI  - A retarded action functional for the Dirac polaron
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 231
EP  - 238
VL  - 122
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a6/
LA  - ru
ID  - TMF_2000_122_2_a6
ER  - 
%0 Journal Article
%A G. Gandbold
%T A retarded action functional for the Dirac polaron
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 231-238
%V 122
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a6/
%G ru
%F TMF_2000_122_2_a6
G. Gandbold. A retarded action functional for the Dirac polaron. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 231-238. http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a6/

[1] L. D. Landau, Phys. Z. Sowjetunion, 3 (1933), 664 | Zbl

[2] N. N. Bogolyubov, S. V. Tyablikov, ZhETF, 19 (1949), 256

[3] H. Fröhlich, Philos. Mag. Suppl., 3 (1954), 325 | Zbl

[4] W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. Lett., 42 (1980), 1648

[5] Z. B. Su, L. Yu, Phys. Rev. B, 27 (1983), 5199 | DOI

[6] K.-F. Berggren, T. J. Thornton, D. J. Newson, M. Pepper, Phys. Rev. Lett., 57 (1986), 1769 | DOI

[7] B. E. Sernelius, Phys. Rev. B, 36 (1987), 9509; 37 (1988), 7909

[8] F. M. Peeters, X. Wu, J. T. Devreese, Phys. Rev. B, 33 (1986), 3926 | DOI

[9] M. H. Degani, O. Hipólito, R. Lobo, G. A. Farias, J. Phys. C, 19 (1986), 2919 | DOI

[10] H. Leschke, S. Wonneberger, J. Phys. A, 22 (1989), L1009 | DOI | MR

[11] C. Quinghu, W. Kelin, W. Shaolong, J. Phys.: Condens. Matter, 6 (1994), 6599 | DOI

[12] E. P. Gross, Ann. Phys., 99 (1976), 1 | DOI | MR

[13] R. P. Feynman, Phys. Rev., 97 (1955), 660 | DOI | Zbl

[14] F. M. Peeters, M. A. Smondyrev, Phys. Rev. B, 43 (1991), 4920 | DOI

[15] J. Adamowski, B. Gerlach, H. Leschke, Functional Integration. Theory and Application, Plenum Press, New York, 1980

[16] G. V. Efimov, G. Ganbold, Phys. Part. Nucl., 26 (1995), 198 | MR

[17] M. Dineykhan, G. V. Efimov, G. Ganbold, S. N. Nedelko, unpublished, 1995 | Zbl

[18] G. Ganbold, G. V. Efimov, Phys. Rev. B, 50 (1994), 373 ; Oscillator Representation in Quantum Physics, Lecture Notes in Physics, series Monographs m, 26, Springer, Berlin, 1995 | DOI | MR | Zbl

[19] G. Ganbold, G. V. Efimov, J. Phys.: Condens. Matter, 10 (1998), 4845 | DOI

[20] M. Saitoh, J. Phys. Soc. Japan, 49 (1980), 878 | DOI | MR

[21] M. A. Smondyrev, Physica A, 171 (1991), 191 | DOI

[22] E. H. Lieb, K. Yamazaki, Phys. Rev., 111 (1958), 728 | DOI | Zbl

[23] W. Fischer, H. Leschke, P. Müller, “Path integration in quantum mechanics by changing drift and time of the underlying process”, Path Integrals from meV to MeV, Proc. of the 4th Int. Conf. “Path Integrals from meV to MeV” (Tutzing, May 18–21, 1992), eds. H. Grabert, A. Inomata, L. S. Schulman, and U. Weiss, World Scientific, River Edge, New Jersey, 1993, 259–267 | MR

[24] B. Gaveau, L. S. Schulman, J. Phys. A, 19 (1986), 1833 | DOI | MR | Zbl

[25] C. Alexandrou, R. Rosenfelder, Phys. Rep., 215 (1992), 1 | DOI | MR

[26] H. Kleinert, Phys. Lett. A, 207 (1995), 133 | DOI | MR | Zbl