Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 205-211
Voir la notice de l'article provenant de la source Math-Net.Ru
We focus on integrable systems with two degrees of freedom that are integrable in the Liouville sense and are obtained as real and imaginary parts of a polynomial (or entire) complex function in two complex variables. We propose definitions of the actions for such systems (which are not of the Arnol'd–Liouville type). We show how to compute the actions from a complex Hamilton–Jacobi equation and apply these techniques to several examples including those recently considered in relation to perturbations of the Ruijsenaars–Schneider system. These examples introduce the crucial problem of the semiclassical approach to the corresponding quantum systems.
@article{TMF_2000_122_2_a4,
author = {C. Doss-Bachelet and J. Fran\c{c}oise},
title = {Integrable {Hamiltonian} systems with two degrees of freedom associated with holomorphic functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {205--211},
publisher = {mathdoc},
volume = {122},
number = {2},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a4/}
}
TY - JOUR AU - C. Doss-Bachelet AU - J. Françoise TI - Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 205 EP - 211 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a4/ LA - ru ID - TMF_2000_122_2_a4 ER -
%0 Journal Article %A C. Doss-Bachelet %A J. Françoise %T Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 205-211 %V 122 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a4/ %G ru %F TMF_2000_122_2_a4
C. Doss-Bachelet; J. Françoise. Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 205-211. http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a4/