Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 205-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We focus on integrable systems with two degrees of freedom that are integrable in the Liouville sense and are obtained as real and imaginary parts of a polynomial (or entire) complex function in two complex variables. We propose definitions of the actions for such systems (which are not of the Arnol'd–Liouville type). We show how to compute the actions from a complex Hamilton–Jacobi equation and apply these techniques to several examples including those recently considered in relation to perturbations of the Ruijsenaars–Schneider system. These examples introduce the crucial problem of the semiclassical approach to the corresponding quantum systems.
@article{TMF_2000_122_2_a4,
     author = {C. Doss-Bachelet and J. Fran\c{c}oise},
     title = {Integrable {Hamiltonian} systems with two degrees of freedom associated with holomorphic functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {205--211},
     year = {2000},
     volume = {122},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a4/}
}
TY  - JOUR
AU  - C. Doss-Bachelet
AU  - J. Françoise
TI  - Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 205
EP  - 211
VL  - 122
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a4/
LA  - ru
ID  - TMF_2000_122_2_a4
ER  - 
%0 Journal Article
%A C. Doss-Bachelet
%A J. Françoise
%T Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 205-211
%V 122
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a4/
%G ru
%F TMF_2000_122_2_a4
C. Doss-Bachelet; J. Françoise. Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 205-211. http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a4/

[1] F. Magri, “A geometrical approach to Nonlinear solvable Equations”, Nonlinear Evolution Equations and Dynamical Systems, Proc. of the Meeting (University of Lecce June 20–23, 1979), Lecture Notes in Physics, 120, eds. M. Boiti, F. Pempinelli, and G. Soliani, Springer, Berlin, 1980, 233–263 | DOI | MR

[2] F. Calogero, J. Math. Phys., 39 (1998), 5268–5291 | DOI | MR | Zbl

[3] H. Flaschka, Phys. Lett. A, 131 (1988), 505–508 | DOI | MR

[4] F. Strocchi, Rev. Mod. Phys., 38:1 (1966), 36–43 | DOI | MR

[5] V. I. Arnol'd, A. Avez, Problèmes ergodiques de la mécanique classique, Gauthier-Villars, Paris, 1967 | MR | Zbl

[6] F. Calogero, J.-P. Françoise, Solution of certain integrable dynamical systems of Ruijsenaars–Schneider type with completely periodic trajectories, v rabote

[7] F. Calogero, J. Math. Phys., 38 (1997), 5711–5719 | DOI | MR | Zbl

[8] F. Calogero, “Tricks of the trade: relating and deriving solvable and integrable dynamical systems”, Proceedings of the International Workshop on Calogero–Moser–Sutherland type models (Centre de Recherches Mathématiques de l'Université de Montréal, Canada, March 1997) (to appear) | Zbl

[9] F. Calogero, Solution of two quantum problems in the plane, v rabote

[10] J.-P. Françoise, Séminaire de Maths. Supérieures de Montréal, 102 (1986), 101–120 | Zbl

[11] J.-P. Françoise, Commun. Math. Phys., 117 (1988), 37–47 | DOI | MR | Zbl

[12] G. Goldstein, Klassicheskaya mekhanika, Gostekhizdat, M., 1957