Quantum integrability and quantum chaos in the micromaser
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 182-204 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time-dependent quantum Hamiltonians $$ \widehat H(t)=\begin{cases} \widehat H,\quad &t_i<t<t_i+t_\mathrm{int}, \\ \omega_0\widehat N,\quad &t_i+t_\mathrm{int}<t<t_{i+1}, \end{cases} $$ describe a maser with $N$ two-level atoms coupled to a single mode of a quantized field inside the maser cavity; here, $t_i$, $i=1,2,\dots,N_a$, are discrete times, $N_a$ is large ($\sim 10^5$), $\widehat{N}$ is the number operator in the Heisenberg–Weyl (HW) algebra, and $\omega_0$ is the cavity mode frequency. The $N$ atoms form an $(N+1)$-dimensional representation of the $su(2)$ Lie algebra, the single mode forming a representation of the HW algebra. We suppose that $N$ atoms in the excited state enter the cavity at each $t_i$ and leave at $t_i+t_\mathrm{int}$. With all damping and finite-temperature effects neglected, this model for $N=1$ describes the one-atom micromaser currently in operation with $^{85}$Rb atoms making microwave transitions between two high Rydberg states. We show that $\widehat{H}$ is completely integrable in the quantum sense for any $N=1,2,\dots$ and derive a second-order nonlinear ordinary differential equation (ODE) that determines the evolution of the inversion operator $S^Z(t)$ in the $su(2)$ Lie algebra. For $N=1$ and under the nonlinear condition $[S^Z(t)]^2= (1/)4\hat{I}$, this ODE linearizes to the operator form of the harmonic oscillator equation, which we solve. For $N=1$, the motion in the extended Hilbert space $\mathcal H$ can be a limit-cycle motion combining the motion of the atom under this nonlinear condition with the tending of the photon number $n$ to $n_0$ determined by $\sqrt{n_0+1}gt_\mathrm{int}=r\pi$ $($where $r$ is an integer and $g$ is the atom-field coupling constant$)$. The motion is steady for each value of $t_i$; at each $t_i$, the atom-field state is $|e\rangle|n_0\rangle$, where $|e\rangle$ is the excited state of the two-level atom and $\widehat{N}|n_0\rangle=n_0|n_0\rangle$. Using a suitable loop algebra, we derive a Lax pair formulation of the operator equations of motion during the times $t_\mathrm{int}$ for any $N$. For $N=2$ and $N=3$, the nonlinear operator equations linearize under appropriate additional nonlinear conditions; we obtain operator solutions for $N=2$ and $N=3$. We then give the $N=2$ masing solution. Having investigated the semiclassical limits of the nonlinear operator equations of motion, we conclude that “quantum chaos” cannot be created in an $N$-atom micromaser for any value of $N$. One difficulty is the proper form of the semiclassical limits for the $N$-atom operator problems. Because these $c$-number semiclassical forms have an unstable singular point, “quantum chaos” might be created by driving the real quantum system with an additional external microwave field coupled to the maser cavity.
@article{TMF_2000_122_2_a3,
     author = {R. K. Bullough and N. M. Bogolyubov and R. R. Puri},
     title = {Quantum integrability and quantum chaos in the micromaser},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {182--204},
     year = {2000},
     volume = {122},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a3/}
}
TY  - JOUR
AU  - R. K. Bullough
AU  - N. M. Bogolyubov
AU  - R. R. Puri
TI  - Quantum integrability and quantum chaos in the micromaser
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 182
EP  - 204
VL  - 122
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a3/
LA  - ru
ID  - TMF_2000_122_2_a3
ER  - 
%0 Journal Article
%A R. K. Bullough
%A N. M. Bogolyubov
%A R. R. Puri
%T Quantum integrability and quantum chaos in the micromaser
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 182-204
%V 122
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a3/
%G ru
%F TMF_2000_122_2_a3
R. K. Bullough; N. M. Bogolyubov; R. R. Puri. Quantum integrability and quantum chaos in the micromaser. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 182-204. http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a3/

[1] D. Meschede, H. Walther, and G. Müller, Phys. Rev. Lett., 54 (1985), 551 | DOI

[2] G. Rempe, H. Walther, and N. Klein, Phys. Rev. Lett., 58 (1987), 353 | DOI

[3] G. Rempe, F. Schmidt-Kaler, and H. Walther, Phys. Rev. Lett., 64 (1990), 2783 | DOI | MR

[4] R. K. Bullough, N. Nayak, and B. V. Thompson, Recent Developments in Quantum Optics, ed. R. Inguva, Plenum Press, New York, 1993 | Zbl

[5] L. A. Lugiato, M. O. Scully, and H. Walther, Phys. Rev. A, 36 (1986), 740 | DOI

[6] M. O. Scully and W. E. Lamb Jr., Phys. Rev., 159 (1967), 203 ; M. O. Scully, D. M. Kim, and W. E. Lamb Jr., Phys. Rev. A, 2 (1970), 2529 | DOI | DOI

[7] R. R. Puri, S. A. Kumar, and R. K. Bullough, “Stroboscopic theory of atom statistics in the micromaser”, Phys. Rev. A (to appear)

[8] G. Rempe and H. Walther, Phys. Rev. A, 42 (1990), 1650 | DOI

[9] R. R. Puri, F. Haake, and D. Forster, J. Opt. Soc. Am. B, 13 (1996), 2689 | DOI | MR

[10] R. K. Bullough et al., Notions and Perspectives of Nonlinear Optics, Series in Nonlinear Optics, 3, ed. O. Keller, World Scientific, Singapore, 1996, 10–92

[11] E. T. Jaynes and F. W. Cummings, Proc. IEEE, 51 (1963), 89 | DOI

[12] N. M. Bogoliubov, R. K. Bullough, and J. Timonen, J. Phys. A, 29 (1996), 6305 ; G. P. Hildred, R. R. Puri, S. S. Hassan, and R. K. Bullough, J. Phys. B, 17 (1984), L535 | DOI | MR | Zbl | DOI

[13] F. Haake, Quantum Signatures of Chaos, Chap. 5, Springer Series in Synergetics, 54, Springer, Berlin, 1991, 78–97 | MR

[14] M. Tavis and F. W. Cummings, Phys. Rev., 170 (1968), 379 | DOI

[15] R. H. Dicke, Phys. Rev., 93 (1954), 99 | DOI | Zbl

[16] E. Wehner, R. Seno, N. Sterpi, B. G. Engelert, and H. Walther, Opt. Commun., 110 (1994), 653 | DOI

[17] K. Hepp and E. H. Lieb, Ann. Phys., 76 (1973), 360 | DOI | MR

[18] R. K. Bullough, “The one-atom micromaser: a quantum integrable nonlinear dynamical system in a far-from-equilibrium state”, Symmetries and Integrability of Difference Equations, Proc. SIDE-II meeting (Canterbury, July 1–5, 1996), eds. P. A. Clarkson, A. S. Fokas, and F. W. Nijhoff, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[19] R. K. Bullough and R. R. Puri, “Quantum integrability and quantum chaos in the micromaser”, Proc. Intl. Meeting Nonlinear Dynamics: Integrability and Chaos, ed. M. Daniel, World Scientific, Singapore, 1999

[20] A. Joshi, A. Kremid, N. Nayak, B. V. Thompson, and R. K. Bullough, ICONO '95: Atomic and Quantum Optics: High Precision Measurements, Proc. SPIE, 2799, eds. S. N. Bagayev and A. S. Chirkin, Washington, 1996, 35–44 | DOI

[21] N. M. Bogolyubov, Exactly solvable models of quantum nonlinear optics, Preprint HU-TFT-IR-96-3, Res. Inst. for Theor. Phys., U. of Helsinki, Helsinki, 1996

[22] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[23] R. K. Bullough and J. Timonen, “Quantum and classical integrable models and statistical mechanics”, Statistical Mechanics and Field Theory, eds. V. V. Bazhanov and C. J. Burden, World Scientific, Singapore, 1995, 336–414

[24] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatgiz, M., 1962

[25] T. Mullin, The Nature of Chaos, Clarendon, Oxford, 1993 | Zbl