A quest for the integrable equation in $3+1$ dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 305-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $L$ and $T$ operators of the Korteweg–de Vries equation are modified to seek a $(3+1)$-dimensional integrable equation. However, the Lax equation in this case is eventually reduced to a $(2+1)$-dimensional equation. We also propose other modified equations and their Lax pairs. A similar attempt is made to derive a higher-dimensional Harry Dym (HD) equation. As a result, a new $(2+1)$-dimensional HD equation is presented.
@article{TMF_2000_122_2_a12,
     author = {Yu. Song-Ju and K. Toda and T. Fukuyama},
     title = {A quest for the integrable equation in $3+1$ dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {305--309},
     year = {2000},
     volume = {122},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a12/}
}
TY  - JOUR
AU  - Yu. Song-Ju
AU  - K. Toda
AU  - T. Fukuyama
TI  - A quest for the integrable equation in $3+1$ dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 305
EP  - 309
VL  - 122
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a12/
LA  - ru
ID  - TMF_2000_122_2_a12
ER  - 
%0 Journal Article
%A Yu. Song-Ju
%A K. Toda
%A T. Fukuyama
%T A quest for the integrable equation in $3+1$ dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 305-309
%V 122
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a12/
%G ru
%F TMF_2000_122_2_a12
Yu. Song-Ju; K. Toda; T. Fukuyama. A quest for the integrable equation in $3+1$ dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 2, pp. 305-309. http://geodesic.mathdoc.fr/item/TMF_2000_122_2_a12/

[1] O. I. Bogoyavlenskii, Izv. AN SSSR. Ser. matem., 53:2 (1989), 243 | MR

[2] J. Schiff, Painlevé Transendents, Their Asymtopics and Physical Applications, Plenum, New York, 1992 | Zbl

[3] O. I. Bogoyavlenskii, Izv. AN SSSR. Ser. matem., 54:1 (1990), 123 | MR | Zbl

[4] O. I. Bogoyavlenskii, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1123 | MR | Zbl

[5] B. Grammaticos, A. Ramani, J. Hietarinta, Phys. Lett. A, 190 (1994), 65 | DOI | MR

[6] J. Hietarinta, B. Grammaticos, A. Ramani, Integrable trilinear PDE's, E-print solv-int/9411003 | MR

[7] S. Yu, K. Toda, N. Sasa, T. Fukuyama, J. Phys. A, 31 (1998), 3337 | DOI | MR | Zbl

[8] V. S. Dryuma, Pisma v ZhETF, 19 (1974), 753

[9] S. Yu, K. Toda, T. Fukuyama, Hierarchy of higher dimensional integrable systems, E-print solv-int/9802005

[10] S. Yu, K. Toda, T. Fukuyama, $N$-soliton solutions to a new $(2+1)$-dimensional integrable equations, E-print solv-int/9803012 | MR

[11] X. Hu, Y. Li, J. Grad. School USTC (Acad. Sin.), 6 (1989), 8 (in Chinese)

[12] B. G. Konopelchenko, Phys. Lett. A, 92 (1982), 323 | DOI | MR

[13] R. Miura, J. Math. Phys., 9 (1968), 1202 | DOI | MR | Zbl

[14] B. G. Konopelchenko, V. G. Dubrovsky, Phys. Lett. A, 102 (1984), 15 | DOI | MR

[15] F. Kalodzhero, A. Degasperis, Spektralnye preobrazovaniya i solitony, Mir, M., 1982 | MR