Asymptotic approximations for a new eigenvalue in linear problems without a threshold
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 118-127

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the criterion for a new eigenvalue to appear in the linear spectral problem associated with the intermediate long-wave equation. We compute the asymptotic value of the new eigenvalue in the limit of a small potential using a Fourier decomposition method. We compare the results with those for the Schrödinger operator with a radially symmetrical potential.
@article{TMF_2000_122_1_a9,
     author = {D. E. Pelinovsky and C. Sulem},
     title = {Asymptotic approximations for a new eigenvalue in linear problems without a threshold},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {118--127},
     publisher = {mathdoc},
     volume = {122},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a9/}
}
TY  - JOUR
AU  - D. E. Pelinovsky
AU  - C. Sulem
TI  - Asymptotic approximations for a new eigenvalue in linear problems without a threshold
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 118
EP  - 127
VL  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a9/
LA  - ru
ID  - TMF_2000_122_1_a9
ER  - 
%0 Journal Article
%A D. E. Pelinovsky
%A C. Sulem
%T Asymptotic approximations for a new eigenvalue in linear problems without a threshold
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 118-127
%V 122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a9/
%G ru
%F TMF_2000_122_1_a9
D. E. Pelinovsky; C. Sulem. Asymptotic approximations for a new eigenvalue in linear problems without a threshold. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 118-127. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a9/