Asymptotic approximations for a new eigenvalue in linear problems without a threshold
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 118-127
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the criterion for a new eigenvalue to appear in the linear spectral problem associated with the intermediate long-wave equation. We compute the asymptotic value of the new eigenvalue in the limit of a small potential using a Fourier decomposition method. We compare the results with those for the Schrödinger operator with a radially symmetrical potential.
@article{TMF_2000_122_1_a9,
author = {D. E. Pelinovsky and C. Sulem},
title = {Asymptotic approximations for a new eigenvalue in linear problems without a threshold},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {118--127},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a9/}
}
TY - JOUR AU - D. E. Pelinovsky AU - C. Sulem TI - Asymptotic approximations for a new eigenvalue in linear problems without a threshold JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 118 EP - 127 VL - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a9/ LA - ru ID - TMF_2000_122_1_a9 ER -
%0 Journal Article %A D. E. Pelinovsky %A C. Sulem %T Asymptotic approximations for a new eigenvalue in linear problems without a threshold %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 118-127 %V 122 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a9/ %G ru %F TMF_2000_122_1_a9
D. E. Pelinovsky; C. Sulem. Asymptotic approximations for a new eigenvalue in linear problems without a threshold. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 118-127. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a9/