B\"acklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 102-117

Voir la notice de l'article provenant de la source Math-Net.Ru

An investigation of the so-called Weingarten congruences in $E^3$ yields a system of partial differential equations (describing hyperbolic surfaces in $E^3$) and also its Bäcklund transformation.
@article{TMF_2000_122_1_a8,
     author = {M. Nieszporski and A. Sym},
     title = {B\"acklund transformations for hyperbolic surfaces in $E^3$ via {Weingarten} congruences},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--117},
     publisher = {mathdoc},
     volume = {122},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/}
}
TY  - JOUR
AU  - M. Nieszporski
AU  - A. Sym
TI  - B\"acklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 102
EP  - 117
VL  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/
LA  - ru
ID  - TMF_2000_122_1_a8
ER  - 
%0 Journal Article
%A M. Nieszporski
%A A. Sym
%T B\"acklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 102-117
%V 122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/
%G ru
%F TMF_2000_122_1_a8
M. Nieszporski; A. Sym. B\"acklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 102-117. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/