B\"acklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 102-117
Voir la notice de l'article provenant de la source Math-Net.Ru
An investigation of the so-called Weingarten congruences in $E^3$ yields a system of partial differential equations (describing hyperbolic surfaces in $E^3$) and also its Bäcklund transformation.
@article{TMF_2000_122_1_a8,
author = {M. Nieszporski and A. Sym},
title = {B\"acklund transformations for hyperbolic surfaces in $E^3$ via {Weingarten} congruences},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {102--117},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/}
}
TY - JOUR AU - M. Nieszporski AU - A. Sym TI - B\"acklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 102 EP - 117 VL - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/ LA - ru ID - TMF_2000_122_1_a8 ER -
%0 Journal Article %A M. Nieszporski %A A. Sym %T B\"acklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 102-117 %V 122 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/ %G ru %F TMF_2000_122_1_a8
M. Nieszporski; A. Sym. B\"acklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 102-117. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/