@article{TMF_2000_122_1_a8,
author = {M. Nieszporski and A. Sym},
title = {B\"acklund transformations for hyperbolic surfaces in $E^3$ via {Weingarten} congruences},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {102--117},
year = {2000},
volume = {122},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/}
}
TY - JOUR AU - M. Nieszporski AU - A. Sym TI - Bäcklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 102 EP - 117 VL - 122 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/ LA - ru ID - TMF_2000_122_1_a8 ER -
M. Nieszporski; A. Sym. Bäcklund transformations for hyperbolic surfaces in $E^3$ via Weingarten congruences. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 102-117. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a8/
[1] B. Cenkl, Physica D, 18 (1986), 217–219 | DOI | MR | Zbl
[2] D. Levi, A. Sym, Phys. Lett. A, 149 (1990), 381–387 | DOI | MR
[3] S. P. Finikov, Teoriya kongruentsii, Gostekhizdat, M.–L., 1950
[4] M. Nieszporski, A. Sym, “Weingarten congruences and non-auto-Bäcklund transformations for hyperbolic surfaces”, Proc. of First Non-Orthodox School on Nonlinearity and Geometry, eds. D. Wójcik and J. Cieśliński, PWN, Warsaw, 1998, 37–40 | MR | Zbl
[5] R. Prus, A. Sym, “Rectilinear congruences and Bäcklund transformations: roots of the soliton theory”, Proc. of First Non-Orthodox School on Nonlinearity and Geometry, eds. D. Wójcik and J. Cieśliński, PWN, Warsaw, 1998, 25–36 | MR | Zbl
[6] J. Cieśliński, “Lie symmetries as a tool to isolate integrable geometries”, Nonlinear Evolution Equations and Dynamical Systems, eds. M. Boiti, L. Martina, and F. Pempinelli, World Scientific, Singapore, 1992, 260–268 | MR | Zbl
[7] H. Jonas, J. Deutsch. Math. Ver., 29 (1920), 40–74 | Zbl
[8] M. Lelieuvre, Bull. Sci. Math., 12 (1888), 126–128
[9] Th.-F. Moutard, J. Ec. Pol., 45 (1878), 1
[10] C. Athorne, Inverse Problems, 9 (1993), 217–232 | DOI | MR | Zbl
[11] V. B. Matveev, M. A. Sale, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991 | MR
[12] C. Guichard, C. R. Acad. Sci. Paris, 110 (1890), 126–127; 112 (1891), 1424–1426
[13] A. Doliwa, P. M. Santini, Phys. Lett. A, 233 (1997), 365–372 | DOI | MR | Zbl
[14] L. Bianchi, Ann. Mat., 18:2 (1890), 301–358 | DOI | MR
[15] A. I. Bobenko, “Surfaces in terms of 2 by 2 matrices: Old and new integrable cases”, Harmonic Maps and Integrable Systems, Aspects of Math., E23, eds. A. P. Fordy and J. C. Wood, Braunschweig–Wiesbaden, 1994 | MR
[16] D. Korotkin, On some integrable cases in surface theory, Preprint Sfb 288 No116, Berlin, 1994 ; http://www-sfb288.math.tu-berlin.de | MR | Zbl
[17] J. Tafel, J. Geom. Phys., 17 (1995), 381–390 | DOI | MR | Zbl
[18] W. K. Schief, C. Rogers, M. E. Johnston, Chaos, Solitons, and Fractals, 5:1 (1995), 25–35 | DOI | MR
[19] W. K. Schief, Nonlinearity, 8 (1995), 1–9 | DOI | MR | Zbl
[20] J. Cieśliński, “The Darboux–Bianchi–Bäcklund transformation and soliton surfaces”, Proc. of First Non-Orthodox School on Nonlinearity and Geometry, eds. D. Wójcik and J. Cieśliński, PWN, Warsaw, 1998, 80–107 | MR