Integrable ordinary differential equations on free associative algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 88-101
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a classification problem for integrable nonlinear ordinary differential equations with an independent variable belonging to a free associative algebra $\mathcal M$. Every equation of this type admits an $m\times m$ matrix reduction for an arbitrary $m$. The existence of symmetries or first integrals belonging to $\mathcal M$ is used as an integrability criterion.
@article{TMF_2000_122_1_a7,
author = {A. V. Mikhailov and V. V. Sokolov},
title = {Integrable ordinary differential equations on free associative algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {88--101},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/}
}
TY - JOUR AU - A. V. Mikhailov AU - V. V. Sokolov TI - Integrable ordinary differential equations on free associative algebras JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 88 EP - 101 VL - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/ LA - ru ID - TMF_2000_122_1_a7 ER -
A. V. Mikhailov; V. V. Sokolov. Integrable ordinary differential equations on free associative algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 88-101. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/