Integrable ordinary differential equations on free associative algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 88-101

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a classification problem for integrable nonlinear ordinary differential equations with an independent variable belonging to a free associative algebra $\mathcal M$. Every equation of this type admits an $m\times m$ matrix reduction for an arbitrary $m$. The existence of symmetries or first integrals belonging to $\mathcal M$ is used as an integrability criterion.
@article{TMF_2000_122_1_a7,
     author = {A. V. Mikhailov and V. V. Sokolov},
     title = {Integrable ordinary differential equations on free associative algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {88--101},
     publisher = {mathdoc},
     volume = {122},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/}
}
TY  - JOUR
AU  - A. V. Mikhailov
AU  - V. V. Sokolov
TI  - Integrable ordinary differential equations on free associative algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 88
EP  - 101
VL  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/
LA  - ru
ID  - TMF_2000_122_1_a7
ER  - 
%0 Journal Article
%A A. V. Mikhailov
%A V. V. Sokolov
%T Integrable ordinary differential equations on free associative algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 88-101
%V 122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/
%G ru
%F TMF_2000_122_1_a7
A. V. Mikhailov; V. V. Sokolov. Integrable ordinary differential equations on free associative algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 88-101. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/