Integrable ordinary differential equations on free associative algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 88-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a classification problem for integrable nonlinear ordinary differential equations with an independent variable belonging to a free associative algebra $\mathcal M$. Every equation of this type admits an $m\times m$ matrix reduction for an arbitrary $m$. The existence of symmetries or first integrals belonging to $\mathcal M$ is used as an integrability criterion.
@article{TMF_2000_122_1_a7,
     author = {A. V. Mikhailov and V. V. Sokolov},
     title = {Integrable ordinary differential equations on free associative algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {88--101},
     year = {2000},
     volume = {122},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/}
}
TY  - JOUR
AU  - A. V. Mikhailov
AU  - V. V. Sokolov
TI  - Integrable ordinary differential equations on free associative algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 88
EP  - 101
VL  - 122
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/
LA  - ru
ID  - TMF_2000_122_1_a7
ER  - 
%0 Journal Article
%A A. V. Mikhailov
%A V. V. Sokolov
%T Integrable ordinary differential equations on free associative algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 88-101
%V 122
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/
%G ru
%F TMF_2000_122_1_a7
A. V. Mikhailov; V. V. Sokolov. Integrable ordinary differential equations on free associative algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 88-101. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a7/

[1] V. V. Sokolov, A. B. Shabat, Soviet Scientific Reviews, Section C, 4 (1984), 221–280 | Zbl

[2] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42:4 (1987), 3–53 | MR

[3] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is integrability?, ed. V. E. Zakharov, Springer-Verlag, Berlin–N.Y., 1991, 115–184 | DOI | MR | Zbl

[4] P. J. Olver, V. V. Sokolov, Commun. Math. Phys., 193:2 (1998), 245–268 | DOI | MR | Zbl

[5] P. J. Olver, V. V. Sokolov, Inverse Problems, 14:6 (1998), L5–L8 | DOI | MR | Zbl

[6] S. P. Balandin, V. V. Sokolov, Phys. Lett. A, 246 (1998), 267–272 | DOI | MR | Zbl

[7] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[8] V. V. Sokolov, S. I. Svinolupov, Mat. zametki, 53:2 (1993), 122–125 | MR | Zbl

[9] I. M. Gelfand, Yu. I. Manin, M. A. Shubin, Funkts. analiz i ego prilozh., 10:4 (1976), 30–34 | MR | Zbl