Nonlinear fourth-order differential equations with solutions in the form of transcendents
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 72-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present two hierarchies of ordinary differential equations and give the relations between these hierarchies. We find rational and special solutions of one hierarchy. Solutions of two differential equations are shown to be essentially transcendental functions with respect to the integration constants.
@article{TMF_2000_122_1_a6,
     author = {N. A. Kudryashov},
     title = {Nonlinear fourth-order differential equations with solutions in the form of transcendents},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {72--87},
     year = {2000},
     volume = {122},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a6/}
}
TY  - JOUR
AU  - N. A. Kudryashov
TI  - Nonlinear fourth-order differential equations with solutions in the form of transcendents
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 72
EP  - 87
VL  - 122
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a6/
LA  - ru
ID  - TMF_2000_122_1_a6
ER  - 
%0 Journal Article
%A N. A. Kudryashov
%T Nonlinear fourth-order differential equations with solutions in the form of transcendents
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 72-87
%V 122
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a6/
%G ru
%F TMF_2000_122_1_a6
N. A. Kudryashov. Nonlinear fourth-order differential equations with solutions in the form of transcendents. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 72-87. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a6/

[1] N. A. Kudryashov, Phys. Lett. A, 224 (1997), 353 | DOI | MR

[2] N. A. Kudryashov, M. B. Soukharev, Phys. Lett. A, 237 (1998), 206 | DOI | MR | Zbl

[3] N. A. Kudryashov, J. Phys. A, 31 (1998), L129 | DOI | MR | Zbl

[4] M. J. Ablowitz, A. Ramani, H. Segur, J. Math. Phys., 21 (1980), 715 ; 1006 | DOI | MR | Zbl | Zbl

[5] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge Univ. Press., Cambridge, 1991 | MR | Zbl

[6] P. J. Caudrey, R. K. Dodd, J. D. Gibbon, Proc. Roy Soc. London. A, 351 (1976), 407 | DOI | MR | Zbl

[7] R. K. Dodd, J. D. Gibbon, Proc. Roy Soc. London. A, 358 (1977), 287 | DOI | MR

[8] B. Kuperschmidt, G. Wilson, Invent. Math., 62 (1981), 403 | DOI | MR

[9] J. Weiss, J. Math. Phys., 25 (1984), 13 | DOI | MR | Zbl

[10] J. Weiss, J. Math. Phys., 27 (1986), 1293 | DOI | MR | Zbl

[11] R. Conte, “The Painlevé approach to nonlinear ordinary differential equations”, The Painleve Property, One Century Later, CRM Series in Mathematical Physics, ed. R. Conte, Springer-Verlag, New York, 1999, 77 ; E-print solv-int/9710020 | MR | Zbl

[12] R. Conte, A. P. Fordy, A. Pickering, Physica D, 69 (1993), 33 | DOI | MR | Zbl

[13] N. A. Kudryashov, J. Phys. A, 27 (1994), 2457 | DOI | MR | Zbl

[14] N. A. Kudryashov, J. Phys. A, 30 (1997), 5445 | DOI | MR | Zbl

[15] N. A. Kudryashov, A. Pickering, J. Phys. A, 31:47 (1998), 9505 | DOI | MR | Zbl

[16] E. L. Ains, Obyknovennye differentsialnye uravneniya, GNTI Ukrainy, Kharkov, 1939 | MR

[17] V. I. Gromak, N. A. Lukashevich, Analiticheskie svoistva reshenii uravnenii Penleve, Universitetskoe izd-vo, Minsk, 1990 | MR | Zbl

[18] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M., 1941 | MR