Existence of a global solution of the Whitham equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 58-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for Whitham equations with monotonic analytic initial data is studied. If the initial data $f(u)$ satisfies the condition $f^{(2N+1)}(u)<0$ for all $u\in\mathbf R$ except a number of isolated points, then the genus of the solution of the Whitham equations is at most equal to $N$, where $1\leq N\in\mathbf N$.
@article{TMF_2000_122_1_a5,
     author = {T. Grava},
     title = {Existence of a global solution of the {Whitham} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {58--71},
     year = {2000},
     volume = {122},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a5/}
}
TY  - JOUR
AU  - T. Grava
TI  - Existence of a global solution of the Whitham equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 58
EP  - 71
VL  - 122
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a5/
LA  - ru
ID  - TMF_2000_122_1_a5
ER  - 
%0 Journal Article
%A T. Grava
%T Existence of a global solution of the Whitham equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 58-71
%V 122
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a5/
%G ru
%F TMF_2000_122_1_a5
T. Grava. Existence of a global solution of the Whitham equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 58-71. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a5/

[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | MR

[2] H. Flaschka, M. Forest, D. H. McLaughlin, Commun. Pure Appl. Math., 33 (1980), 739–784 | DOI | MR | Zbl

[3] P. D. Lax, C. D. Levermore, Commun. Pure Appl. Math., 36 (1983), 253–290 ; 571–593 ; 809–830 | DOI | MR | Zbl | MR | Zbl | MR

[4] C. D. Levermore, Commun. Part. Diff. Equat., 13 (1988), 495–514 | DOI | MR | Zbl

[5] B. A. Dubrovin, S. P. Novikov, UMN, 44:6 (1989), 29–98 | MR | Zbl

[6] S. P. Tsarev, DAN SSSR, 282 (1985), 534–537 | MR | Zbl

[7] I. M. Krichever, Funkts. analiz i ego prilozh., 22:3 (1988), 37–52 | MR | Zbl

[8] A. G. Gurevich, L. P. Pitaevskii, Pisma v ZhETF, 17:5 (1973), 268–271

[9] Fei Ran Tian, Commun. Pure Appl. Math., 46 (1993), 1093–1129 | DOI | MR | Zbl

[10] G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA, 1957 | MR | Zbl

[11] E. I. Zverovich, UMN, 26:1 (1971), 252–253 | MR

[12] Fei Ran Tian, Duke Math. J., 74 (1994), 203–221 | DOI | MR | Zbl

[13] V. V. Avilov, I. M. Krichever, S. P. Novikov, DAN SSSR, 295 (1987), 345–349 | MR | Zbl

[14] G. V. Potemin, UMN, 43:5 (1988), 211–212 | MR