An analogue of the Moutard transformation for the Goursat equation $\theta_{xy}=2\sqrt {\lambda(x,y)\theta_x\theta_y}$
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 50-57

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new Bäcklund-type transformation for the nonlinear equation $\theta_{xy}=2\sqrt{\lambda(x,y)\theta_x\theta_y}$ studied by É. Goursat. Goursat found a linearization transformation and some properties of this equation, which make it similar to the Moutard equation $u_{xy}=M(x,y)u$. However, this Goursat transformation does not provide proper superposition formulas. We give the necessary extended superposition formulas.
@article{TMF_2000_122_1_a4,
     author = {E. I. Ganzha},
     title = {An analogue of the {Moutard} transformation for the {Goursat} equation $\theta_{xy}=2\sqrt {\lambda(x,y)\theta_x\theta_y}$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {50--57},
     publisher = {mathdoc},
     volume = {122},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a4/}
}
TY  - JOUR
AU  - E. I. Ganzha
TI  - An analogue of the Moutard transformation for the Goursat equation $\theta_{xy}=2\sqrt {\lambda(x,y)\theta_x\theta_y}$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 50
EP  - 57
VL  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a4/
LA  - ru
ID  - TMF_2000_122_1_a4
ER  - 
%0 Journal Article
%A E. I. Ganzha
%T An analogue of the Moutard transformation for the Goursat equation $\theta_{xy}=2\sqrt {\lambda(x,y)\theta_x\theta_y}$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 50-57
%V 122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a4/
%G ru
%F TMF_2000_122_1_a4
E. I. Ganzha. An analogue of the Moutard transformation for the Goursat equation $\theta_{xy}=2\sqrt {\lambda(x,y)\theta_x\theta_y}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 50-57. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a4/