An elementary approach to the polynomial $\tau$-functions of the KP hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 23-36

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an elementary construction of the solutions of the KP hierarchy associated with polynomial $\tau$-functions starting with a geometric approach to soliton equations based on the concept of a bi-Hamiltonian system. As a consequence, we establish a Wronskian formula for the polynomial $\tau$-functions of the KP hierarchy. This formula, known in the literature, is obtained very directly.
@article{TMF_2000_122_1_a2,
     author = {G. Falqui and F. Magri and M. Pedroni and J. P. Zubelli},
     title = {An elementary approach to the polynomial $\tau$-functions of the {KP} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--36},
     publisher = {mathdoc},
     volume = {122},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/}
}
TY  - JOUR
AU  - G. Falqui
AU  - F. Magri
AU  - M. Pedroni
AU  - J. P. Zubelli
TI  - An elementary approach to the polynomial $\tau$-functions of the KP hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 23
EP  - 36
VL  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/
LA  - ru
ID  - TMF_2000_122_1_a2
ER  - 
%0 Journal Article
%A G. Falqui
%A F. Magri
%A M. Pedroni
%A J. P. Zubelli
%T An elementary approach to the polynomial $\tau$-functions of the KP hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 23-36
%V 122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/
%G ru
%F TMF_2000_122_1_a2
G. Falqui; F. Magri; M. Pedroni; J. P. Zubelli. An elementary approach to the polynomial $\tau$-functions of the KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/