An elementary approach to the polynomial $\tau$-functions of the KP hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 23-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give an elementary construction of the solutions of the KP hierarchy associated with polynomial $\tau$-functions starting with a geometric approach to soliton equations based on the concept of a bi-Hamiltonian system. As a consequence, we establish a Wronskian formula for the polynomial $\tau$-functions of the KP hierarchy. This formula, known in the literature, is obtained very directly.
@article{TMF_2000_122_1_a2,
     author = {G. Falqui and F. Magri and M. Pedroni and J. P. Zubelli},
     title = {An elementary approach to the polynomial $\tau$-functions of the {KP} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--36},
     year = {2000},
     volume = {122},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/}
}
TY  - JOUR
AU  - G. Falqui
AU  - F. Magri
AU  - M. Pedroni
AU  - J. P. Zubelli
TI  - An elementary approach to the polynomial $\tau$-functions of the KP hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 23
EP  - 36
VL  - 122
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/
LA  - ru
ID  - TMF_2000_122_1_a2
ER  - 
%0 Journal Article
%A G. Falqui
%A F. Magri
%A M. Pedroni
%A J. P. Zubelli
%T An elementary approach to the polynomial $\tau$-functions of the KP hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 23-36
%V 122
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/
%G ru
%F TMF_2000_122_1_a2
G. Falqui; F. Magri; M. Pedroni; J. P. Zubelli. An elementary approach to the polynomial $\tau$-functions of the KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/

[1] M. J. Ablowitz, J. Satsuma, J. Math. Phys., 19 (1978), 2180–2186 | DOI | MR | Zbl

[2] H. Airault, H. P. McKean, J. Moser, Commun. Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl

[3] F. Calogero, Nuovo Cimento B, 43 (1978), 177–241 | DOI | MR

[4] D. V. Chudnovsky, G. V. Chudnovsky, Nuovo Cimento B, 40 (1977), 339–353 | DOI | MR

[5] I. M. Krichever, Funkts. analiz i ego prilozh., 12:1 (1978), 76–78 | MR | Zbl

[6] M. D. Kruskal, “The Korteweg–de Vries equation and related evolution equations”, Nonlinear Wave Motion, Lect. Appl. Math., 15, ed. A. C. Newell, AMS, Providence, 1974, 61–83 | MR

[7] V. B. Matveev, Lett. Math. Phys., 3 (1979), 503–512 | DOI | MR | Zbl

[8] T. Shiota, J. Math. Phys., 35 (1994), 5844–5849 | DOI | MR | Zbl

[9] G. Wilson, Invent. Math., 133 (1998), 1–41 | DOI | MR | Zbl

[10] M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold”, Nonlinear PDEs in Applied Sciences, US–Japan Seminar (Tokyo), eds. P. Lax, H. Fujita, North-Holland Publ. Company, Amsterdam, 1982, 259–271 | MR

[11] Y. Ohta, J. Satsuma, D. Takahashi, T. Tokihiro, Progr. Theor. Phys. Suppl., 94 (1988), 210–241 | DOI

[12] J. P. Zubelli, Lett. Math. Phys., 24 (1992), 41–48 | DOI | MR | Zbl

[13] G. Wilson, J. Reine Angew. Math., 442 (1993), 177–204 | MR | Zbl

[14] The Bispectral Problem (Montreal, PQ, 1997), eds. J. Harnad, A. Kasman, Amer. Math. Soc., Providence, RI, 1998 | MR

[15] G. Falqui, F. Magri, M. Pedroni, Commun. Math. Phys., 197 (1998), 303–324 | DOI | MR | Zbl

[16] K. Takasaki, Rev. Math. Phys., 1 (1989), 1–46 | DOI | MR | Zbl

[17] I. V. Cherednik, Funkts. analiz i ego prilozh., 12:3 (1978), 45–54 | MR | Zbl

[18] G. Wilson, Quart. J. Math. Oxford, 32 (1981), 491–512 | DOI | MR | Zbl

[19] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory, Proceed. of R.I.M.S. Symp., eds. M. Jimbo, T. Miwa, World Scientific, Singapore, 1983, 39–119 | MR

[20] L. A. Dickey, Soliton equations and Hamiltonian systems, Adv. Series in Math. Phys., 12, World Scientific, Singapore, 1991 | DOI | MR | Zbl

[21] P. Casati, G. Falqui, F. Magri, M. Pedroni, J. Math. Phys., 38 (1997), 4606–4628 | DOI | MR | Zbl

[22] M. F. de Groot, T. J. Hollowood, J. L. Miramontes, Commun. Math. Phys., 145 (1992), 57–84 | DOI | MR | Zbl

[23] G. Falki, F. Magri, G. Tondo, TMF, 122:2 (2000), 212–230 | DOI | MR

[24] K. Takasaki, “Integrable systems as deformations of $\mathcal D$-modules”, Theta functions, Proc. 35th Summer Res. Inst. Bowdoin Coll. (Brunswick/ME, 1987), Proc. Symp. Pure Math., 49, no. 1, 1989, 143–168 | DOI | MR | Zbl

[25] M. Mulase, “Algebraic theory of the KP equations”, Perspectives in Mathematical Physics, eds. R. Penner, S.-T. Yau, International Press, Boston, 1994, 151–217 | MR | Zbl

[26] F. Magri, M. Pedroni, J. P. Zubelli, Commun. Math. Phys., 188 (1997), 305–325 | DOI | MR | Zbl

[27] W. T. Reid, Riccati Differential Equations, Academic Press, New York, 1972 | MR

[28] V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1990 | MR