An elementary approach to the polynomial $\tau$-functions of the KP hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 23-36
Voir la notice de l'article provenant de la source Math-Net.Ru
We give an elementary construction of the solutions of the KP hierarchy associated with polynomial $\tau$-functions starting with a geometric approach to soliton equations based on the concept of a bi-Hamiltonian system. As a consequence, we establish a Wronskian formula for the polynomial $\tau$-functions of the KP hierarchy. This formula, known in the literature, is obtained very directly.
@article{TMF_2000_122_1_a2,
author = {G. Falqui and F. Magri and M. Pedroni and J. P. Zubelli},
title = {An elementary approach to the polynomial $\tau$-functions of the {KP} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {23--36},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/}
}
TY - JOUR AU - G. Falqui AU - F. Magri AU - M. Pedroni AU - J. P. Zubelli TI - An elementary approach to the polynomial $\tau$-functions of the KP hierarchy JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2000 SP - 23 EP - 36 VL - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/ LA - ru ID - TMF_2000_122_1_a2 ER -
%0 Journal Article %A G. Falqui %A F. Magri %A M. Pedroni %A J. P. Zubelli %T An elementary approach to the polynomial $\tau$-functions of the KP hierarchy %J Teoretičeskaâ i matematičeskaâ fizika %D 2000 %P 23-36 %V 122 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/ %G ru %F TMF_2000_122_1_a2
G. Falqui; F. Magri; M. Pedroni; J. P. Zubelli. An elementary approach to the polynomial $\tau$-functions of the KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a2/