Initial boundary value problems for the nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 128-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new spectral method for solving initial boundary value problems for linear and integrable nonlinear partial differential equations in two independent variables is applied to the nonlinear Schrцdinger equation and to its linearized version in the domain $\{x\geq l(t),t\geq0\}$. We show that there exist two cases: a) if $l''(t)<0$, then the solution of the linear or nonlinear equations can be obtained by solving the respective scalar or matrix Riemann–Hilbert problem, which is defined on a time-dependent contour; b) if $l''(t)>0$, then the Riemann–Hilbert problem is replaced by a respective scalar or matrix $\overline\partial$ problem on a time-independent domain. In both cases, the solution is expressed in a spectrally decomposed form.
@article{TMF_2000_122_1_a10,
     author = {B. Pelloni},
     title = {Initial boundary value problems for the nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {128--143},
     year = {2000},
     volume = {122},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a10/}
}
TY  - JOUR
AU  - B. Pelloni
TI  - Initial boundary value problems for the nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 128
EP  - 143
VL  - 122
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a10/
LA  - ru
ID  - TMF_2000_122_1_a10
ER  - 
%0 Journal Article
%A B. Pelloni
%T Initial boundary value problems for the nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 128-143
%V 122
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a10/
%G ru
%F TMF_2000_122_1_a10
B. Pelloni. Initial boundary value problems for the nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 128-143. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a10/

[1] A. S. Fokas, B. Pelloni, A spectral method for linear and integrable nonlinear {P}{D}{E}'s in arbitrary domains, unpublished

[2] A. S. Fokas, Proc. Roy. Soc. Ser. A, 453 (1997), 1411–1443 | DOI | MR | Zbl

[3] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York, 1970 | MR | Zbl

[4] M. J. Ablowitz, A. S. Fokas, Introduction and Applications of Complex Variables, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[5] A. S. Fokas, A. Its, SIAM J. Math. Anal., 27 (1996), 738–764 | DOI | MR | Zbl

[6] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 118–134