On the relation between the continuous and discrete Painlevé equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 5-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method for deriving difference equations (the discrete Painlevé equations in particular) from the Bäcklund transformations of the continuous Painlevé equations is discussed. This technique can be used to derive several of the known discrete Painlevé equations (in particular, the first and second discrete Painlevé equations and some of their alternative versions). The Painlevé equations possess hierarchies of rational solutions and one-parameter families of solutions expressible in terms of the classical special functions for special values of the parameters. Hence, the aforementioned relations can be used to generate hierarchies of exact solutions for the associated discrete Painlevé equations. Exact solutions of the Painlevé equations simultaneously satisfy both a differential equation and a difference equation, analogously to the special functions.
@article{TMF_2000_122_1_a1,
     author = {P. A. Clarkson and E. L. Mansfield and H. N. Webster},
     title = {On the relation between the continuous and discrete {Painlev\'e} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--22},
     year = {2000},
     volume = {122},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a1/}
}
TY  - JOUR
AU  - P. A. Clarkson
AU  - E. L. Mansfield
AU  - H. N. Webster
TI  - On the relation between the continuous and discrete Painlevé equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2000
SP  - 5
EP  - 22
VL  - 122
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a1/
LA  - ru
ID  - TMF_2000_122_1_a1
ER  - 
%0 Journal Article
%A P. A. Clarkson
%A E. L. Mansfield
%A H. N. Webster
%T On the relation between the continuous and discrete Painlevé equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2000
%P 5-22
%V 122
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a1/
%G ru
%F TMF_2000_122_1_a1
P. A. Clarkson; E. L. Mansfield; H. N. Webster. On the relation between the continuous and discrete Painlevé equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 122 (2000) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/TMF_2000_122_1_a1/

[1] E. Picard, Compt. Rend. Acad. Sci. Paris, 104 (1887), 41–43

[2] E. L. Ains, Obyknovennye differentsialnye uravneniya, GNTI Ukrainy, Kharkov, 1939 | MR

[3] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, L.M.S. Lect. Notes Math., 149, C.U.P., Cambridge, 1991 | MR | Zbl

[4] H. Airault, Stud. Appl. Math., 61 (1979), 31–53 | DOI | MR | Zbl

[5] A. P. Bassom, P. A. Clarkson, A. C. Hicks, Stud. Appl. Math., 95 (1995), 1–71 | DOI | MR | Zbl

[6] V. I. Gromak, Dif. uravn., 14 (1978), 2131–2135 | MR | Zbl

[7] K. Kajiwara, T. Masuda, A generalization of determinant formulas for the solutions of Painlevé II and XXIV equations, E-print solv-int/9903014 | MR

[8] K. Kajiwara, T. Masuda, On the Umemura polynomials for the Painlevé III equation, E-print solv-int/9903015 | MR

[9] K. Kajiwara, Y. Ohta, J. Math. Phys., 37 (1996), 4393–4704 | DOI | MR

[10] K. Kajiwara, Y. Ohta, J. Phys. A, 31 (1998), 2431–2446 | DOI | MR | Zbl

[11] A. E. Milne, P. A. Clarkson, A. P. Bassom, Stud. Appl. Math., 98 (1997), 139–194 | DOI | MR | Zbl

[12] Y. Murata, Funkc. Ekvacioj. Ser. Int., 28 (1985), 1–32 | MR | Zbl

[13] Y. Murata, Nagoya Math. J., 139 (1995), 37–65 | DOI | MR | Zbl

[14] K. Okamoto, Ann. Mat. Pure Appl., 146 (1987), 337–381 | DOI | MR | Zbl

[15] K. Okamoto, Japan. J. Math., 13 (1987), 47–76 | MR | Zbl

[16] K. Okamoto, Math. Annal., 275 (1986), 221–255 | DOI | MR | Zbl

[17] K. Okamoto, Funkc. Ekvacioj. Ser. Int., 30 (1987), 305–332 | MR | Zbl

[18] A. S. Fokas, M. J. Ablowitz, J. Math. Phys., 23 (1982), 2033–2042 | DOI | MR | Zbl

[19] A. S. Fokas, U. Mugan, M. J. Ablowitz, Physica D, 30 (1988), 247–283 | DOI | MR | Zbl

[20] V. I. Gromak, Dif. uravn., 11 (1975), 373–376 | MR | Zbl

[21] U. Mugan, A. S. Fokas, J. Math. Phys., 33 (1992), 2031–2045 | DOI | MR | Zbl

[22] H. Flaschka, A. C. Newell, Commun. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl

[23] A. R. Its, V. Yu. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lect. Notes in Math., 1191, Springer-Verlag, Berlin, 1986 | DOI | MR

[24] K. Okamoto, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 33 (1986), 575–618 | MR | Zbl

[25] A. P. Magnus, J. Comp. Appl. Anal., 57 (1995), 215–237 | DOI | MR | Zbl

[26] E. Brézin, V. A. Kazakov, Phys. Lett. B, 236 (1990), 144–150 | DOI | MR

[27] D. J. Gross, A. A. Migdal, Phys. Rev. Lett., 64 (1990), 127–130 | DOI | MR | Zbl

[28] V. Periwal, D. Shevitz, Phys. Rev. Lett., 64 (1990), 1326–1329 | DOI | MR

[29] B. Grammaticos, A. Ramani, V. Papageorgiou, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl

[30] A. Ramani, B. Grammaticos, J. Hietarinta, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl

[31] J. Hietarinta, C. Viallet, Phys. Rev. Lett., 81 (1998), 325–328 | DOI

[32] M. Jimbo, H. Sakai, Lett. Math. Phys., 38 (1996), 145–154 | DOI | MR | Zbl

[33] M. Jimbo, H. Sakai, A. Ramani, B. Grammaticos, Phys. Lett. A, 217 (1996), 111–118 | DOI | Zbl

[34] B. Grammaticos, A. Ramani, The hunting for the discrete Painlevé VI is over, E-print solv-int/9901006 | MR

[35] A. P. Bassom, P. A. Clarkson, Phys. Lett. A, 194 (1994), 358–370 | DOI | MR | Zbl

[36] P. A. Clarkson, H. N. Webster, Chaos, Solitons and Fractals (to appear)

[37] C. Cresswell, N. Joshi, J. Phys. A, 32 (1999), 655–669 | DOI | MR | Zbl

[38] B. Grammaticos, F. W. Nijhoff, V. Papageorgiou, A. Ramani, J. Satsuma, Phys. Lett. A, 185 (1994), 446–452 | DOI | MR

[39] B. Grammaticos, F. W. Nijhoff, A. Ramani, “Discrete Painlevé equations”, The Painlevé Property, One Century Later, CRM series in Mathematical Physics, ed. R. Conte, Springer-Verlag, New York, 1999, 413–516 | MR | Zbl

[40] J. Hietarinta, K. Kajiwara, “Rational solutions to d-PIV”, Symmetries and Integrability of Difference Equations, LMS Lect. Notes Series, 255, eds. P. A. Clarkson, F. W. Nijhoff, C.U.P., Cambridge, 1999, 206–216 | MR | Zbl

[41] N. Joshi, A. Ramani, B. Grammaticos, Phys. Lett. A, 249 (1998), 59–62 | DOI | MR | Zbl

[42] K. Kajiwara, “The discrete Painlevé II equation and the classical special functions”, Symmetries and Integrability of Difference Equations, LMS Lect. Notes Series, 255, eds. P. A. Clarkson, F. W. Nijhoff, C.U.P., Cambridge, 1999, 217–227 | MR | Zbl

[43] K. Kajiwara, Y. Ohta, J. Satsuma, J. Math. Phys., 36 (1995), 4162–4174 | DOI | MR | Zbl

[44] K. Kajiwara, Y. Ohta, J. Satsuma, B. Grammaticos, A. Ramani, J. Phys. A, 27 (1994), 915–922 | DOI | MR | Zbl

[45] K. Kajiwara, K. Yamamoto, Y. Ohta, Phys. Lett. A, 232 (1997), 189–199 | DOI | MR | Zbl

[46] F. W. Nijhoff, J. Satsuma, K. Kajiwara, B. Grammaticos, A. Ramani, Inverse Problems, 12 (1996), 697–716 | DOI | MR | Zbl

[47] Y. Ohta, K. Kajiwara, J. Satsuma, “Bilinear structure and exact solutions of the discrete Painlevé I equation”, Symmetries and Integrability of Difference Equations, CRM Proc. Lecture Notes, 9, eds. P. Winternitz, D. Levi, Amer. Math. Soc., Providence, RI, 1996, 265–268 | DOI | MR | Zbl

[48] Y. Ohta, A. Ramani, B. Grammaticos, K. M. Tamizhmani, Phys. Lett. A, 216 (1996), 255–261 | DOI | MR

[49] A. Ramani, B. Grammaticos, Physica A, 228 (1996), 160–171 | DOI | MR | Zbl

[50] A. Ramani, B. Grammaticos, J. Satsuma, J. Phys. A, 28 (1995), 4655–4665 | DOI | MR | Zbl

[51] A. Ramani, Y. Ohta, J. Satsuma, B. Grammaticos, Commun. Math. Phys., 192 (1998), 67–76 | DOI | MR | Zbl

[52] J. Satsuma, K. Kajiwara, B. Grammaticos, J. Hietarinta, A. Ramani, J. Phys. A, 28 (1995), 3541–3548 | DOI | MR | Zbl

[53] K. M. Tamizhmani, B. Grammaticos, A. Ramani, Lett. Math. Phys., 29 (1993), 49–54 | DOI | MR | Zbl

[54] K. M. Tamizhmani, A. Ramani, B. Grammaticos, K. Kajiwara, J. Phys. A, 31 (1998), 5799–5810 | DOI | MR | Zbl

[55] K. M. Tamizhmani, A. Ramani, B. Grammaticos, Y. Ohta, Lett. Math. Phys., 38 (1996), 289–296 | DOI | MR | Zbl

[56] A. S. Fokas, B. Grammaticos, A. Ramani, J. Math. Anal. Appl., 180 (1993), 342–360 | DOI | MR | Zbl

[57] B. Grammaticos, A. Ramani, “Discrete Painlevé equations: derivation and properties”, Application of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI Series C, 413, ed. P. A. Clarkson, Kluwer, Dordrecht, 1993, 299–313 | MR | Zbl

[58] B. Grammaticos, A. Ramani, J. Phys. A, 31 (1998), 5787–5798 | DOI | MR | Zbl

[59] V. I. Gromak, V. V. Tsegelnik, Dif. uravn., 30 (1994), 1118–1124 | MR | Zbl

[60] V. I. Gromak, V. V. Tsegelnik, Dif. uravn., 32 (1996), 1018–1023 | MR | Zbl

[61] V. V. Tsegelnik, TMF, 102 (1995), 364–366 | MR | Zbl

[62] V. V. Tsegelnik, Dif. uravn., 32 (1996), 1434–1435 | MR | Zbl

[63] E. Uitteker, Dzh. Vatson, Kurs sovremennogo analiza, Fizmatgiz, M., 1962

[64] N. A. Lukashevich, Dif. uravn., 7 (1971), 1124–1125 | Zbl

[65] N. A. Lukashevich, Dif. uravn., 3 (1967), 771–780 | MR | Zbl

[66] A. V. Kitaev, chastnoe soobschenie, 1991

[67] A. S. Fokas, A. R. Its, A. V. Kitaev, Commun. Math. Phys., 142 (1991), 313–344 | DOI | MR | Zbl

[68] A. P. Bassom, P. A. Clarkson, A. C. Hicks, Adv. Diff. Eqns., 1 (1995), 175–198 | MR

[69] H. Umemura, H. Watanabe, Nagoya Math. J., 148 (1997), 151–198 | DOI | MR | Zbl

[70] P. A. Clarkson, Europ. J. Appl. Math., 1 (1990), 279–300 | DOI | MR | Zbl

[71] V. I. Gromak, “Bäcklund transformations of Painlevé equations and their applications”, The Painlevé Property, One Century Later, CRM series in Mathematical Physics, ed. R. Conte, Springer-Verlag, New York, 1999, 687–734 | MR | Zbl

[72] N. A. Lukashevich, Dif. uravn., 1 (1965), 731–735 | MR | Zbl

[73] N. A. Lukashevich, Dif. uravn., 3 (1967), 1913–1923 | MR | Zbl

[74] E. L. Mansfield, H. N. Webster, Stud. Appl. Math., 101 (1998), 321–341 | DOI | MR | Zbl

[75] M. Noumi, S. Okada, K. Okamoto, H. Umemura, “Special polynomials associated with the Painlevé equation, II”, Integrable Systems and Algebraic Geometry, eds. M.-H. Saito, Y. Shimizu, R. Ueno, World Scientific, Singapore, 1998, 349–372 | MR | Zbl

[76] H. Umemura, Special polynomials associated with the Painlevé equations, I, Preprint, 1996

[77] H. Umemura, H. Watanabe, Nagoya Math. J., 151 (1998), 1–24 | DOI | MR | Zbl

[78] M. Noumi, Y. Yamada, Commun. Math. Phys., 199 (1998), 281–295 | DOI | MR | Zbl

[79] M. Noumi, Y. Yamada, Phys. Lett. A, 247 (1998), 65–69 | DOI | MR | Zbl

[80] M. Noumi, Y. Yamada, Nagoya Math. J. (to appear)

[81] P. A. Clarkson, N. Joshi, A. Pickering, Inverse Problems, 15 (1999), 175–187 | DOI | MR | Zbl