QED${}_{2+1}$ radiation effects in a strong magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 412-423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop the eigenfunction method for the Dirac operator in a background magnetic field in the $(2+1)$-dimensional quantum electrodynamics (QED${}_{2+1}$). In the eigenfunction representation, we find the exact solutions and the Green's functions of the Dirac equation in a strong constant homogeneous magnetic field in $2+1$ dimensions. In the one-loop QED${}_{2+1}$ approximation, we derive the effective Lagrangian, the density of vacuum fermions induced by the field, and the electron mass operator in a homogeneous background magnetic field.
@article{TMF_1999_121_3_a4,
     author = {V. R. Khalilov},
     title = {QED${}_{2+1}$ radiation effects in a strong magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {412--423},
     year = {1999},
     volume = {121},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a4/}
}
TY  - JOUR
AU  - V. R. Khalilov
TI  - QED${}_{2+1}$ radiation effects in a strong magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 412
EP  - 423
VL  - 121
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a4/
LA  - ru
ID  - TMF_1999_121_3_a4
ER  - 
%0 Journal Article
%A V. R. Khalilov
%T QED${}_{2+1}$ radiation effects in a strong magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 412-423
%V 121
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a4/
%G ru
%F TMF_1999_121_3_a4
V. R. Khalilov. QED${}_{2+1}$ radiation effects in a strong magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 412-423. http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a4/

[1] A. M. J. Schakel, G. W. Semenoff, Phys. Rev. Lett., 66 (1991), 2653 | DOI

[2] R. E. Prange, S. M. Girvin (eds.), The Quantum Hall Effect, 2nd ed., Springer-Verlag, New York, 1990 ; V. Zeitlin, Phys. Lett. B, 352 (1995), 422 | MR | DOI

[3] A. Neagu, A. M. J. Schakel, Phys. Rev. D, 48 (1993), 1785 | DOI

[4] V. R. Khalilov, C. L. Ho, Mod. Phys. Lett. A, 13 (1998), 615 | DOI

[5] V. I. Ritus, Tr. FIAN im. P. N. Lebedeva AN SSSR, 111, 1979, 5 | MR

[6] I. M. Ternov, V. R. Khalilov, V. N. Rodionov, Vzaimodeistvie zaryazhennykh chastits s silnym elektromagnitnym polem, Izd. MGU, M., 1982

[7] I. M. Ternov, V. Ch. Zhukovskii, A. V. Borisov, Kvantovye protsessy v silnom vneshnem pole, Izd. MGU, M., 1989

[8] V. A. Fock, Sow. Phys., 12 (1937), 404 ; J. Schwinger, Phys. Rev., 82 (1951), 664 | Zbl | DOI | MR | Zbl

[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974 | MR

[10] A. J. Niemi, G. W. Semenoff, Phys. Rev. Lett., 51 (1983), 2077 | DOI | MR

[11] S. Deser, R. Jackiw, S. Templeton, Phys. Rev. Lett., 48 (1982), 975 | DOI

[12] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika, Chast 2, Nauka, M., 1978

[13] A. M. J. Schakel, Phys. Rev. D, 43 (1991), 1428 | DOI