Renormalization equations in gravitational theory with higher derivatives
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 387-411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of renormalization equations in gravitational theories with higher derivatives is considered. The gauge dependence of invariant divergences of the effective action is found to be nontrivial. The external source technique is used to construct a consistent Green's function renormalization. One- and two-loop divergences of the effective action are explicitly calculated for an arbitrary parametrization and gauge. These calculations fit the general structure of the obtained renormalization equations.
@article{TMF_1999_121_3_a3,
     author = {K. A. Kazakov and P. I. Pronin},
     title = {Renormalization equations in gravitational theory with higher derivatives},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {387--411},
     year = {1999},
     volume = {121},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a3/}
}
TY  - JOUR
AU  - K. A. Kazakov
AU  - P. I. Pronin
TI  - Renormalization equations in gravitational theory with higher derivatives
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 387
EP  - 411
VL  - 121
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a3/
LA  - ru
ID  - TMF_1999_121_3_a3
ER  - 
%0 Journal Article
%A K. A. Kazakov
%A P. I. Pronin
%T Renormalization equations in gravitational theory with higher derivatives
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 387-411
%V 121
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a3/
%G ru
%F TMF_1999_121_3_a3
K. A. Kazakov; P. I. Pronin. Renormalization equations in gravitational theory with higher derivatives. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 387-411. http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a3/

[1] C. Becchi, A. Rouet, R. Stora, Ann. Phys., 98 (1976), 287 ; Commun. Math. Phys., 42 (1975), 127 | DOI | MR | DOI | MR

[2] I. V. Tyutin, Kalibrovochnaya invariantnost v teorii polya i statisticheskoi fizike v operatornoi formulirovke, Preprint FIAN No 39, 1975

[3] H. Kluberg-Stern, J. B. Zuber, Phys. Rev. D, 12 (1975), 467 | DOI

[4] H. Kluberg-Stern, J. B. Zuber, Phys. Rev. D, 12 (1975), 3159 | DOI

[5] N. K. Nielsen, Nucl. Phys. B, 101 (1975), 173 | DOI

[6] I. Antoniadis, J. Iliopoulos, T. N. Tomaras, Nucl. Phys. B, 267 (1986), 497 | DOI | MR

[7] I. Antoniadis, E. T. Tomboulis, Phys. Rev. D, 33:10 (1986), 2756 | DOI

[8] D. Johnston, Nucl. Phys. B, 293 (1987), 229 | DOI

[9] D. Johnston, Nucl. Phys. B, 297 (1988), 721 | DOI

[10] C. M. Fraser, I. J. R. Aitchison, Ann. Phys. (N. Y.), 156 (1984), 1 | DOI | MR | Zbl

[11] O. Piguet, K. Sibold, Nucl. Phys. B, 253 (1985), 517 | DOI | MR

[12] K. S. Stelle, Phys. Rev. D, 16:4 (1977), 953 | DOI | MR

[13] S. Weinberg, “Ultraviolet divergences in quantum theories of gravitation”, General Relativity, eds. S. W. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1979, 790 | MR

[14] J. Zinn-Justin, “Renormalization of gauge theories”, Trends in Elementary Particle Physics, eds. H. Rollnik, K. Dietz, Springer-Verlag, Berlin, 1975, 2

[15] I. A. Batalin, G. A. Vilkovisky, Phys. Lett. B, 102 (1981), 27 | DOI | MR

[16] J. A. Dixon, J. C. Taylor, Renormalization of Wilson operators, 2, Preprint TP-74-74, Oxford Univ., Oxford, 1975 | MR

[17] S. Joglekar, B. Lee, Ann. Phys., 97:1 (1976), 160 | DOI | MR

[18] I. V. Tyutin, B. L. Voronov, YaF, 39:4 (1984), 998 | MR

[19] K. A. Kazakov, P. I. Pronin, Phys. Rev. D, 59:6 (1999), 064012 | DOI | MR

[20] B. S. DeWitt, Phys. Rev., 162 (1967), 1195 | DOI | Zbl

[21] G. 't Hooft, Nucl. Phys. B, 62 (1973), 444 | DOI

[22] G. 't Hooft, M. Veltman, Ann. Inst. H. Poincare, 20 (1974), 69

[23] I. G. Avramidy, A. O. Barvinsky, Phys. Lett. B, 159 (1985), 269 | DOI

[24] D. I. Kazakov, TMF, 75:1 (1988), 157 | MR

[25] K. A. Kazakov, P. I. Pronin, K. V. Stepanyantz, Gravit. Cosmology, 1998, no. 1, 17

[26] K. A. Kazakov, M. Yu. Kalmykov, P. I. Pronin, “Parametrizatsionnaya i kalibrovochnaya zavisimost $\beta$-funktsii v teoriyakh gravitatsii”, Trudy pervoi otkrytoi konferentsii molodykh uchenykh i spetsialistov, OIYaI, Dubna, 1997, 65

[27] M. Yu. Kalmykov, K. A. Kazakov, P. I. Pronin, K. V. Stepanyantz, Class. Q Grav., 15 (1998), 3777 | DOI | MR | Zbl

[28] P. I. Pronin, K. V. Stepanyantz, Nucl. Phys. B, 485 (1997), 517 | DOI