Monodromy-free Schr\"odinger operators with quadratically increasing potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 374-386
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider one-dimensional monodromy-free Schrödinger operators with quadratically increasing rational potentials. It is shown that all these operators can be obtained from the operator $-\partial^2+x^2$ by finitely many rational Darboux transformations. An explicit expression is found for the corresponding potentials in terms of Hermite polynomials.
@article{TMF_1999_121_3_a2,
author = {A. A. Oblomkov},
title = {Monodromy-free {Schr\"odinger} operators with quadratically increasing potentials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {374--386},
publisher = {mathdoc},
volume = {121},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a2/}
}
TY - JOUR AU - A. A. Oblomkov TI - Monodromy-free Schr\"odinger operators with quadratically increasing potentials JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 374 EP - 386 VL - 121 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a2/ LA - ru ID - TMF_1999_121_3_a2 ER -
A. A. Oblomkov. Monodromy-free Schr\"odinger operators with quadratically increasing potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 374-386. http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a2/