Monodromy-free Schrödinger operators with quadratically increasing potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 374-386
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider one-dimensional monodromy-free Schrödinger operators with quadratically increasing rational potentials. It is shown that all these operators can be obtained from the operator $-\partial^2+x^2$ by finitely many rational Darboux transformations. An explicit expression is found for the corresponding potentials in terms of Hermite polynomials.
@article{TMF_1999_121_3_a2,
author = {A. A. Oblomkov},
title = {Monodromy-free {Schr\"odinger} operators with quadratically increasing potentials},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {374--386},
year = {1999},
volume = {121},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a2/}
}
A. A. Oblomkov. Monodromy-free Schrödinger operators with quadratically increasing potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 374-386. http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a2/
[1] J. J. Duistermaat, F. A. Grünbaum, Commun. Math. Phys., 103 (1986), 177 | DOI | MR | Zbl
[2] O. A. Chalykh, UMN, 53:2 (1998), 167 | DOI | MR | Zbl
[3] Yu. Yu. Berest, A. P. Veselov, UMN, 53:1 (1998), 211 | DOI | MR | Zbl
[4] V. M. Goncharenko, A. P. Veselov, J. Phys. A, 31:26 (1998), 5315 | DOI | MR | Zbl
[5] G. Darboux, Compt. Rend. Acad. Sci., 94 (1882), 1343
[6] J. L. Burchnall, T. W. Chaundy, Proc. London Math. Soc. Ser. 2, 21 (1930), 420 | DOI
[7] M. M. Crum, Quart. J. Math. Oxford. Ser. 2, 6 (1955), 121 | DOI | MR | Zbl
[8] E. Ains, Obyknovennye differentsialnye uravneniya, Gos. nauch.-tekhn. izd-vo Ukrainy, Kharkov, 1939 | MR