Solutions of the classical equation of motion for a spin in electromagnetic fields
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 509-518 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evolution of a charged particle spin in electromagnetic fields of a special form is investigated based on the Bargmann–Michel–Telegdi equation. For some types of nonhomogeneous fields, an exact analytic form of the dependence of the spin vector on the four-dimensional velocity of the particle is found.
@article{TMF_1999_121_3_a11,
     author = {A. E. Lobanov and O. S. Pavlova},
     title = {Solutions of the classical equation of motion for a spin in electromagnetic fields},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {509--518},
     year = {1999},
     volume = {121},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a11/}
}
TY  - JOUR
AU  - A. E. Lobanov
AU  - O. S. Pavlova
TI  - Solutions of the classical equation of motion for a spin in electromagnetic fields
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 509
EP  - 518
VL  - 121
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a11/
LA  - ru
ID  - TMF_1999_121_3_a11
ER  - 
%0 Journal Article
%A A. E. Lobanov
%A O. S. Pavlova
%T Solutions of the classical equation of motion for a spin in electromagnetic fields
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 509-518
%V 121
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a11/
%G ru
%F TMF_1999_121_3_a11
A. E. Lobanov; O. S. Pavlova. Solutions of the classical equation of motion for a spin in electromagnetic fields. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 509-518. http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a11/

[1] V. Bargmann, L. Michel, V. Telegdi, Phys. Rev. Lett., 2 (1959), 435 | DOI

[2] D. M. Fradkin, R. H. Good, Rev. Mod. Phys., 33 (1961), 343 | DOI | Zbl

[3] I. M. Ternov, V. R. Khalilov, O. S. Pavlova, Izv. vuzov. Fizika, 1978, no. 12, 89 ; 1979, No 2, 39 | MR

[4] I. M. Ternov, ZhETF, 98 (1990), 1169

[5] V. G. Bagrov, V. A. Bordovitsyn, Izv. vuzov. Fizika, 1980, no. 2, 67

[6] Yu. G. Pavlenko, YaF, 28 (1978), 156

[7] A. S. Vshivtsev, V. Ch. Zhukovskii, A. E. Lobanov, R. A. Potapov, YaF, 57 (1994), 758

[8] J. Schmit, R. H. Good, Phys. Rev. D, 13 (1976), 3410 | DOI

[9] A. Chakrabarti, Nuovo Cimento A, 56 (1968), 604 | DOI

[10] D. Zwanziger, Phys. Rev. B, 139 (1965), 1318 | DOI | MR

[11] Ya. S. Derbenev, A. M. Kondratenko, ZhETF, 64 (1973), 1918

[12] Ya. S. Derbenev, A. M. Kondratenko, A. N. Skrinskii, DAN SSSR, 192:6 (1970), 1255

[13] S. R. Mane, Phys. Rev. Lett., 57 (1986), 78 | DOI

[14] D. D. Barber, S. R. Mane, Phys. Rev. A, 37 (1988), 456 | DOI

[15] Yu. M. Shirokov, ZhETF, 21 (1951), 748

[16] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[17] V. G. Bagrov, D. M. Gitman, I. M. Ternov i dr., Tochnye resheniya relyativistskikh volnovykh uravnenii, Nauka, Novosibirsk, 1982

[18] A. E. Lobanov, Vestn. Mosk. un-ta. Fiz. Astron., 1997, no. 2, 59

[19] I. M. Ternov, Vvedenie v fiziku spina relyativistskikh chastits, Gl. V, Izd-vo Mosk. un-ta, M., 1997 | MR