Algebraic-geometric solutions of the Krichever--Novikov equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 367-373
Voir la notice de l'article provenant de la source Math-Net.Ru
A zero-curvature representation with constant poles on an elliptic curve is obtained for the Krichever–Novikov equation. Algebraic-geometric solutions of this equation are constructed. The consideration is based on reducing the theta function of a two-sheet covering of an elliptic curve to the Prym theta functions of codimension one.
@article{TMF_1999_121_3_a1,
author = {D. P. Novikov},
title = {Algebraic-geometric solutions of the {Krichever--Novikov} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {367--373},
publisher = {mathdoc},
volume = {121},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a1/}
}
D. P. Novikov. Algebraic-geometric solutions of the Krichever--Novikov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 367-373. http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a1/