Algebraic-geometric solutions of the Krichever–Novikov equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 367-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A zero-curvature representation with constant poles on an elliptic curve is obtained for the Krichever–Novikov equation. Algebraic-geometric solutions of this equation are constructed. The consideration is based on reducing the theta function of a two-sheet covering of an elliptic curve to the Prym theta functions of codimension one.
@article{TMF_1999_121_3_a1,
     author = {D. P. Novikov},
     title = {Algebraic-geometric solutions of the {Krichever{\textendash}Novikov} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {367--373},
     year = {1999},
     volume = {121},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a1/}
}
TY  - JOUR
AU  - D. P. Novikov
TI  - Algebraic-geometric solutions of the Krichever–Novikov equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 367
EP  - 373
VL  - 121
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a1/
LA  - ru
ID  - TMF_1999_121_3_a1
ER  - 
%0 Journal Article
%A D. P. Novikov
%T Algebraic-geometric solutions of the Krichever–Novikov equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 367-373
%V 121
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a1/
%G ru
%F TMF_1999_121_3_a1
D. P. Novikov. Algebraic-geometric solutions of the Krichever–Novikov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 367-373. http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a1/

[1] I. M. Krichever, S. P. Novikov, DAN SSSR, 247:1 (1979), 33–37 | MR | Zbl

[2] I. M. Krichever, S. P. Novikov, UMN, 35:6 (1980), 47–68 | MR | Zbl

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[4] S. I. Svinolupov, V. V. Sokolov, R. I. Yamilov, DAN SSSR, 271:4 (1983), 802–805 | MR | Zbl

[5] B. A. Dubrovin, I. M. Krichever, S. P. Novikov, “Integriruemye sistemy, I”, Dinamicheskie sistemy–4, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 4, ed. R. V. Gamkrelidze, VINITI, M., 1985, 179–284 | MR

[6] V. V. Sokolov, DAN SSSR, 277:1 (1984), 48–50 | MR

[7] O. I. Mokhov, Matem. zametki, 50:3 (1991), 87–96 | MR

[8] G. Latham, E. Previato, Acta Appl. Math., 39 (1995), 405–433 | DOI | MR | Zbl

[9] S. P. Novikov, P. G. Grinevich, Funkts. analiz i ego prilozh., 16:1 (1982), 25–26 | MR | Zbl

[10] E. D. Belokolos, A. I. Bobenko, V. B. Matveev, V. Z. Enolskii, UMN, 41:2 (1986), 3–42 | MR | Zbl

[11] R. Khirota, “Pryamye metody v teorii solitonov”, Solitony, ed. R. Bulaf, F. Kodri, Mir, M., 1983, 175–192 | MR

[12] I. M. Krichever, Funkts. analiz i ego prilozh., 12:3 (1978), 20–31 | MR | Zbl

[13] P. G. Grinevich, Funkts. analiz i ego prilozh., 16:1 (1982), 19–24 | MR | Zbl

[14] E. L. Ains, Obyknovennye differentsialnye uravneniya, GNTI Ukrainy, Kharkov, 1939 | MR

[15] I. M. Krichever, Funkts. analiz i ego prilozh., 11:3 (1977), 15–31 | MR | Zbl

[16] B. A. Dubrovin, UMN, 36:2 (1981), 11–80 | MR | Zbl

[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967 | MR

[18] D. P. Novikov, R. K. Romanovskii, TMF, 110:1 (1997), 61–72 | DOI | MR | Zbl

[19] I. V. Cherednik, YaF, 33:1 (1981), 278–281

[20] I. M. Krichever, Funkts. analiz i ego prilozh., 29:2 (1995), 1–8 | MR | Zbl

[21] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, J. Phys. A: Math. Gen., 16 (1983), 221–236 | DOI | MR | Zbl